scholarly journals Mapping the irrecoverable carbon in Earth’s ecosystems

Author(s):  
Monica L. Noon ◽  
Allie Goldstein ◽  
Juan Carlos Ledezma ◽  
Patrick R. Roehrdanz ◽  
Susan C. Cook-Patton ◽  
...  

AbstractAvoiding catastrophic climate change requires rapid decarbonization and improved ecosystem stewardship at a planetary scale. The carbon released through the burning of fossil fuels would take millennia to regenerate on Earth. Though the timeframe of carbon recovery for ecosystems such as peatlands, mangroves and old-growth forests is shorter (centuries), this timeframe still exceeds the time we have remaining to avoid the worst impacts of global warming. There are some natural places that we cannot afford to lose due to their irreplaceable carbon reserves. Here we map ‘irrecoverable carbon’ globally to identify ecosystem carbon that remains within human purview to manage and, if lost, could not be recovered by mid-century, by when we need to reach net-zero emissions to avoid the worst climate impacts. Since 2010, agriculture, logging and wildfire have caused emissions of at least 4.0 Gt of irrecoverable carbon. The world’s remaining 139.1 ± 443.6 Gt of irrecoverable carbon faces risks from land-use conversion and climate change. These risks can be reduced through proactive protection and adaptive management. Currently, 23.0% of irrecoverable carbon is within protected areas and 33.6% is managed by Indigenous peoples and local communities. Half of Earth’s irrecoverable carbon is concentrated on just 3.3% of its land, highlighting opportunities for targeted efforts to increase global climate security.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1347
Author(s):  
Kyriakos Maniatis ◽  
David Chiaramonti ◽  
Eric van den Heuvel

The present work considers the dramatic changes the COVID-19 pandemic has brought to the global economy, with particular emphasis on energy. Focusing on the European Union, the article discusses the opportunities policy makers can implement to reduce the climate impacts and achieve the Paris Agreement 2050 targets. The analysis specifically looks at the fossil fuels industry and the future of the fossil sector post COVID-19 pandemic. The analysis first revises the fossil fuel sector, and then considers the need for a shift of the global climate change policy from promoting the deployment of renewable energy sources to curtailing the use of fossil fuels. This will be a change to the current global approach, from a relative passive one to a strategically dynamic and proactive one. Such a curtailment should be based on actual volumes of fossil fuels used and not on percentages. Finally, conclusions are preliminary applied to the European Union policies for net zero by 2050 based on a two-fold strategy: continuing and reinforcing the implementation of the Renewable Energy Directive to 2035, while adopting a new directive for fixed and over time increasing curtailment of fossils as of 2025 until 2050.


2021 ◽  
Author(s):  
Igor Makarov

Abstract As the world’s largest fossil fuels exporter, Russia is one of the key countries for addressing global climate change. However, it has never demonstrated any significant ambitions to reduce greenhouse gas (GHG) emissions. This paper applies ideational research methodology to identify the structural differences in economic, political, and social normative contexts between industrialized fossil fuel importing economies and Russia that lead to the fundamental gap in motivations driving decarbonization efforts. Consequently, Russia is unlikely to replicate the approach to the green transition and use instruments of climate policies which are utilized in energy-importing countries. In order to launch decarbonization in Russia, interested stakeholders need to frame climate policies in Russia differently. Specifically, the framing must address the priority of diversification as a means to adapting the national economy to a new green landscape, the combination of diverse channels for decarbonization, the promotion of energy-efficiency, closer attention to climate-related forest projects and linkage of climate change with other environmental problems. Moreover, considering Russia’s emissions as a part of the global economic system and shifting from a simplistic national focus on GHG emissions reduction would help coordinate policies through dialogue between exporters and importers of fossil fuels energy-intensive goods, which is essential for the global movement towards a net-zero future.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Doris Klingelhöfer ◽  
Ruth Müller ◽  
Markus Braun ◽  
Dörthe Brüggmann ◽  
David A. Groneberg

Abstract Background Climate change is safe to be one of the biggest challenges of mankind. Human activities, especially the combustion of fossil fuels, contribute to the increase of greenhouse gases in the atmosphere and thus to the pace of climate change. The effects of climate change are already being felt, and the resulting damage will most likely be enormous worldwide. Because global impacts vary widely and will lead to very different national vulnerability to climate impacts, each country, depending on its economic background, has different options to ward off negative impacts. Decisions have to be made to mitigate climate consequences according to the preparedness and the vulnerability of countries against the presumed impacts. This requires a profound scientific basis. To provide sound background information, a bibliometric study was conducted to present global research on climate change using established and specific parameters. Bibliometric standard parameters, established socioeconomic values, and climate change specific indices were used for the analyses. This allowed us to provide an overall picture of the global research pattern not only in terms of general aspects, but also in terms of climate change impacts, its effects and regional differences. For this purpose, we choose representative indices, such as the CO2 emissions for the responsibility of countries, the global climate risk index as a combination value for the different types of damage that countries can expect, the increase in sea level as a specific parameter as a measure of the huge global environmental impacts, and the readiness and vulnerability index for the different circumstances of individual countries under which climate change will take place. We hope to have thus made a comprehensive and representative selection of specific parameters that is sufficient to map the global research landscape. We have supplemented the methodology accordingly. Results In terms of absolute publication numbers, the USA was the leading country, followed by the UK, and China in 3rd place. The steep rise in Chinese publication numbers over time came into view, while their citation numbers are relatively low. Scandinavian countries were leading regarding their publication numbers related to CO2 emission and socioeconomic indices. Only three developing countries stand out in all analyses: Costa Rica, the Fiji Atoll, and Zimbabwe, although it is here that the climate impact will be greatest. A positive correlation between countries’ preparedness for the impacts of climate change and their publication numbers could be shown, while the correlation between countries’ vulnerability and their publication numbers was negative. Conclusions We could show that there exists an inequity between national research efforts according to the publication output and the demands and necessities of countries related to their socioeconomic status. This inequity calls for a rethink, a different approach, and a different policy to improve countries' preparedness and mitigation capacity, which requires the inclusion of the most affected regions of the world in a strengthened international cooperation network.


2019 ◽  
Vol 27 (2) ◽  
pp. 185-199 ◽  
Author(s):  
James W.N. Steenberg ◽  
Peter N. Duinker ◽  
Irena F. Creed ◽  
Jacqueline N. Serran ◽  
Camille Ouellet Dallaire

In response to global climate change, Canada is transitioning towards a low-carbon economy and the need for policy approaches that are effective, equitable, coordinated, and both administratively and politically feasible is high. One point is clear; the transition is intimately tied to the vast supply of ecosystem services in the boreal zone of Canada. This paper describes four contrasting futures for the boreal zone using scenario analysis, which is a transdisciplinary, participatory approach that considers alternative futures and policy implications under conditions of high uncertainty and complexity. The two critical forces shaping the four scenarios are the global economy’s energy and society’s capacity to adapt. The six drivers of change are atmospheric change, the demand for provisioning ecosystem services, the demand for nonprovisioning ecosystem services, demographics, and social values, governance and geopolitics, and industrial innovation and infrastructure. The four scenarios include: (i) the Green Path, where a low-carbon economy is coupled with high adaptive capacity; (ii) the Uphill Climb, where a low-carbon economy is instead coupled with low adaptive capacity; (iii) the Carpool Lane, where society has a strong capacity to adapt but a reliance on fossil fuels; and (iv) the Slippery Slope, where there is both a high-carbon economy and a society with low adaptive capacity. The scenarios illustrate the importance of transitioning to a low-carbon economy and the role of society’s adaptive capacity in doing so. However, they also emphasize themes like social inequality and adverse environmental outcomes arising from the push towards climate change mitigation.


2019 ◽  
Vol 49 (3) ◽  
pp. 296-304 ◽  
Author(s):  
Isela Jasso-Flores ◽  
Leopoldo Galicia ◽  
Felipe García-Oliva ◽  
Angelina Martínez-Yrízar

Vegetation–soil systems differentially influence the ecosystem processes related to the carbon cycle, particularly when one tree species is dominant over wide geographic regions that are undergoing climate change. The objective of this study was to quantify the stocks of ecosystem carbon in three vegetation–soil systems along a highland elevational gradient in central Mexico. The vegetation–soil systems, from lower to higher elevation, were dominated by Alnus jorullensis Kunth, Abies religiosa (Kunth) Schltdl. & Cham., and Pinus hartwegii Lindl., respectively. Above- and below-ground tree biomass was determined in each system, along with the litter, coarse woody material, roots, and litterfall. The A. religiosa system had the greatest stock of aboveground biomass carbon (216 ± 31 Mg C·ha−1). The A. jorullensis system had the greatest production of litterfall (3.1 ± 0.08 Mg·ha−1·year−1); however, the carbon content of this litter layer (1.2 ± 0.32 Mg C·ha−1) was lower than that of P. hartwegii (10.1 ± 0.28 Mg C·ha−1). Thus, the litter layer in the A. jorullensis system had markedly the shortest residence time (8 years), suggesting high rates of litter decomposition. The soil carbon stock (at soil depth of 1 m) was greater in A. jorullensis (189 Mg C·ha−1) and P. hartwegii (137 Mg C·ha−1) than in A. religiosa (68 Mg C·ha−1). The A. religiosa and A. jorullensis systems had the highest and lowest total ecosystem C content (301 and 228 Mg C·ha−1, respectively). Upward migration of the A. religiosa system in response to global climate change, however, could cause losses by 2030 of 187 Mg C·ha−1 associated with aboveground biomass.


Stanovnistvo ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Predrag Petrovic ◽  
Goran Nikolic ◽  
Ivana Ostojic

Over the past several decades there has been a strong intensifying trend of human society impact on ecosystems, consumption of natural resources and global change. The environmental impact of the society is fully apparent and dominantly implemented through various greenhouse gases emissions (GHG), leading towards global climate change with considerably spread harmful effects. Global climate change includes the earth and ocean surface and atmospheric warming, but also melting of snow and ice, increase of sea levels and ocean acidity, as well as ever more common natural phenomena extremes (winds, various forms of rainfall/precipitation, extremely low or high temperatures, etc.). Scientists are well-familiarized with the fact that use of fossil fuels, such as oil derivatives and coal, is the main generator of harmful gases. In addition, possible substitutions for fossil fuels in the form of other energy sources are very limited, and it should be remembered that other energy sources also have certain adverse environmental effects. Bearing in mind climate change caused by products of fossil fuels combustion, as well as inevitable depletion of natural crude oil resources, management of growing global energy demand becomes one of the key goals and challenges of 21st century. If these reasons are coupled with obligations emanating from Kyoto Protocol, it is clear that attention of researches should be more than reasonably focused on the main determinants of energy consumption. This study is focused on illumination of key demographic and economic determinants of energy consumption in 28 EU member states in the period 1960- 2014. The results obtained demonstrate that population positively and quite strongly influence total energy consumption. An increase of population of 1% will result in an increase of energy consumption of 1.59% to 1.76%. Such relation most probably can be explained by the fact that demographic growth of the society aggravates and complicates planning processes of efficient energy consumption, diminishing the ability of society to be energy efficient. The population effect of persons aged 65 and above to energy consumption is also positive. An increase in share of this age group of 1% will result in an increase in energy consumption of approximately 0.43%. Positive elasticity coefficient should be understood as a proof that European societies with higher share of senior citizens consume more energy that societies with higher share of younger population, not necessarily as an argument that senior citizens use more energy than younger population. The explanation for such nature of a cause-andeffect relation could be that high share of senior citizens influences the structure of production and consumption, spatial distribution of population, transport infrastructure and social services provided. A significant influence on energy consumption in the EU is made by the level of economic development of countries, which is in accordance with the Environmental Kuznets Curve (EKC), suggesting a relation of inverted letter ?U?. The amount of income per capita needed to have the EKC expressed ranges between 54,183 and 81,552 dollars.


Glaciers ◽  
2015 ◽  
Author(s):  
Jorge Daniel Taillant

In the preceding chapters of this book, we’ve traveled through a world of ice that was probably largely uncharted for most of us. Hopefully, we’ve learned a little bit about these fantastic frozen natural resources that play such a fundamental role in the sustainability and balance of our global ecosystem. Glaciers are melting. They are in danger because we have placed them in danger and, as such, we need to take note of and responsibility for this vulnerability, not only to protect glaciers but also to protect the very essence of our global habitat. Glaciers have been unprotected because they are obscure, removed, alien to our daily lives, located in far away places that are for the most part inhospitable to our way of life. And yet, they are a fundamental and integral part of our way of life. With modern tools like the Internet and programs like Google Earth, we can get closer to these fabulous vulnerable resources, to learn about them and work to protect them. The world is challenged today to address global climate change. If we envision a sustainable and harmonious environment in our future, we must progressively move away from fossil fuels and introduce a more balanced and sustainable mix of energy sources grounded on renewable energy. We must find solutions to generating, harnessing, transporting, and managing renewable energies, and we must progressively phase out oil and gas from our daily lives. It is possible; it just takes personal and collective conviction to set ourselves in motion to achieve this goal. Glaciers are a majestic resource, inspiring awe and wonder in a world of frozen beauty that awaits our discovery but that also alerts us to our excesses and indifference. We are losing our glaciers because we have ignored the extreme vulnerability of our planetary ecosystem, and we now must face difficult decisions about policy, consumption, and lifestyle changes that shake the foundations of our society. Global climate change for many seems intangible.


Author(s):  
Nick Jelley

‘Why do we need renewables?’ describes the dangers of fossil fuels and explains the importance of renewable energy as an alternative. It shows that the use of fossil fuels causes global warming and climate change, leading to widespread concern, and also to a growing realization of the harm caused by the air pollution from coal burning and from internal combustion engines in cars and lorries. These threats are causing a switch away from fossil fuels to renewables that is gaining impetus from the growing awareness of the increased intensity and frequency of extreme weather seen in recent years. This transition is also being aided by the falling price of clean energy from renewables, in particular, solar and wind farms, which will become the dominant sources. The area of land or sea required for these farms is readily available, as are the back-ups required to handle their variability. Alternative supplies of low-carbon energy are examined. In the Paris Agreement in 2015, it was recognized that carbon dioxide emissions must reach net-zero by 2050 to avoid dangerous climate change.


2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Mucahid Mustafa Bayrak ◽  
Yi-Ya Hsu ◽  
Li-San Hung ◽  
Huei-Min Tsai ◽  
tibusungu ‘e vayayana

In recent years, the subject of Indigenous peoples and global climate change adaptation has become a rapidly growing area of international study. Despite this trend, Taiwan, home to many Indigenous communities, has received relatively little attention. To date, no comprehensive review of the literature on Taiwan’s Indigenous peoples and global climate change has been conducted. Therefore, this article presents a bibliometric analysis and literature review of both domestic and international studies on Taiwan’s Indigenous peoples in relation to resilience, climate change, and climate shocks in the 10-year period after Typhoon Morakot (2009). We identified 111 domestic and international peer-reviewed articles and analyzed their presentation of the current state of knowledge, geographical and temporal characteristics, and Indigenous representation. Most studies were discovered to focus on post-disaster recovery, particularly within the context of Typhoon Morakot, as well as Indigenous cultures, ecological wisdom, and community development. This study also discovered relatively few studies investigating how traditional ecological knowledge systems can be integrated into climate change adaptation. Most studies also adopted a somewhat narrow focus on Indigenous resilience. Large-scale quantitative and longitudinal studies are found to be in their infancy. We observed a geographical skewness among the studies in favor of southern Taiwan and relatively limited engagement with contemporary studies on Indigenous peoples and climate change. We furthermore determined a large overlap between the destruction path of Morakot and study sites in the articles. Indigenous scholars have managed to find a voice among domestic and international outlets, and an increasing number of scholars have argued for more culturally sensitive approaches to post-disaster recovery and disaster management in Taiwan.


2017 ◽  
Vol 14 (1) ◽  
pp. 37-65
Author(s):  
Alexandra Tomaselli

Indigenous peoples are among the most vulnerable sectors of society in the face of climate change because they generally have a profound and spiritual relationship with the(ir) land. Paradoxically, they are among those who have maintained and promoted a holistic management of the(ir) land and the environment, and have caused less climate change effects. The Inuit petition against the US at the Inter-American Commission of Human Rights has prompted the debate and an increased international attention on climate change effects and human (and indigenous) rights. However, the nexus between human rights and climate change raises several conceptual issues. Against this background, this article pursues a threefold goal. First, it aims to introduce the international debate, scholarly approaches, and conceptual and analytical questions that have arisen and still arise about the human rights-climate change nexus. Second, it tries to ascertain how the exploitation of non-renewable natural resources, such as fossil fuels (e.g. oil and gas), are contributing to climate change and how (some of) its adverse effects may—directly or indirectly—represent a threat for indigenous peoples and their rights in the Russian Federation and in Northern Europe (Denmark-Greenland, Finland, Norway, and Sweden). Third, it seeks to identify which indigenous international law instruments may offer (some) protection to these indigenous peoples against (few) climate change-related harms.


Sign in / Sign up

Export Citation Format

Share Document