scholarly journals Inter-individual body mass variations relate to fractionated functional brain hierarchies

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Bo-yong Park ◽  
Hyunjin Park ◽  
Filip Morys ◽  
Mansu Kim ◽  
Kyoungseob Byeon ◽  
...  

AbstractVariations in body mass index (BMI) have been suggested to relate to atypical brain organization, yet connectome-level substrates of BMI and their neurobiological underpinnings remain unclear. Studying 325 healthy young adults, we examined associations between functional connectivity and inter-individual BMI variations. We utilized non-linear connectome manifold learning techniques to represent macroscale functional organization along continuous hierarchical axes that dissociate low level and higher order brain systems. We observed an increased differentiation between unimodal and heteromodal association networks in individuals with higher BMI, indicative of a disrupted modular architecture and hierarchy of the brain. Transcriptomic decoding and gene enrichment analyses identified genes previously implicated in genome-wide associations to BMI and specific cortical, striatal, and cerebellar cell types. These findings illustrate functional connectome substrates of BMI variations in healthy young adults and point to potential molecular associations.

2020 ◽  
Author(s):  
Bo-yong Park ◽  
Hyunjin Park ◽  
Filip Morys ◽  
Mansu Kim ◽  
Kyoungseob Byeon ◽  
...  

AbstractVariations in body mass index (BMI) have been suggested to relate to atypical brain organization, yet connectome-level substrates of BMI and their neurobiological underpinnings remain unclear. Studying 325 healthy young adults, we examined association between functional connectome organization and BMI variations. We capitalized on connectome manifold learning techniques, which represent macroscale functional connectivity patterns along continuous hierarchical axes that dissociate low level and higher order brain systems. We observed an increased differentiation between unimodal and heteromodal association networks in individuals with higher BMI, indicative of an increasingly segregated modular architecture and a disruption in the hierarchical integration of different brain system. Transcriptomic decoding and subsequent gene enrichment analyses identified genes previously implicated in genome-wide associations to BMI and specific cortical, striatal, and cerebellar cell types. These findings provide novel insights for functional connectome substrates of BMI variations in healthy young adults and point to potential molecular associations.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Shigehiro Namiki ◽  
Michael H Dickinson ◽  
Allan M Wong ◽  
Wyatt Korff ◽  
Gwyneth M Card

In most animals, the brain controls the body via a set of descending neurons (DNs) that traverse the neck. DN activity activates, maintains or modulates locomotion and other behaviors. Individual DNs have been well-studied in species from insects to primates, but little is known about overall connectivity patterns across the DN population. We systematically investigated DN anatomy in Drosophila melanogaster and created over 100 transgenic lines targeting individual cell types. We identified roughly half of all Drosophila DNs and comprehensively map connectivity between sensory and motor neuropils in the brain and nerve cord, respectively. We find the nerve cord is a layered system of neuropils reflecting the fly’s capability for two largely independent means of locomotion -- walking and flight -- using distinct sets of appendages. Our results reveal the basic functional map of descending pathways in flies and provide tools for systematic interrogation of neural circuits.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Nathan G Skene ◽  
Marcia Roy ◽  
Seth GN Grant

The genetic mechanisms regulating the brain and behaviour across the lifespan are poorly understood. We found that lifespan transcriptome trajectories describe a calendar of gene regulatory events in the brain of humans and mice. Transcriptome trajectories defined a sequence of gene expression changes in neuronal, glial and endothelial cell-types, which enabled prediction of age from tissue samples. A major lifespan landmark was the peak change in trajectories occurring in humans at 26 years and in mice at 5 months of age. This species-conserved peak was delayed in females and marked a reorganization of expression of synaptic and schizophrenia-susceptibility genes. The lifespan calendar predicted the characteristic age of onset in young adults and sex differences in schizophrenia. We propose a genomic program generates a lifespan calendar of gene regulation that times age-dependent molecular organization of the brain and mutations that interrupt the program in young adults cause schizophrenia.


2010 ◽  
Vol 12 (4) ◽  
pp. 463-470 ◽  

Continuing to discover how the brain works is one of the great challenges ahead of us. Although understanding the brain anatomy and its functional organization provided a first and indispensable foundation, it became clear that a static view was insufficient. To understand the complexity of neuronal communication, it is necessary to examine the chemical nature of the neurotransmission and, using the example of the acetylcholine receptors, follow the different layers of networks that can be distinguished. The natural alkaloid nicotine contained in tobacco leaves acts as an agonist with a subclass of acetylcholine receptors, and provides an interesting tool to approach brain functions. Analysis of the nicotinic acetylcholine receptors, which are ligand gated channels, revealed that these receptors are expressed at different critical locations on the neurons including the synaptic boutons, neurites, cell bodies, and even on the axons. These receptors can modulate the activity at the microcircuit synaptic level, in the cell processing of information, and, by acting on the velocity of action potential, the synchrony of communication between brain areas. These actions at multiple levels of brain organization provide an example of the complexity of brain neurocircuitry and an illustration of the relevance of this knowledge for psychiatry.


2019 ◽  
Vol 26 (2) ◽  
pp. 117-133 ◽  
Author(s):  
Corey Horien ◽  
Abigail S. Greene ◽  
R. Todd Constable ◽  
Dustin Scheinost

Functional magnetic resonance imaging has proved to be a powerful tool to characterize spatiotemporal patterns of human brain activity. Analysis methods broadly fall into two camps: those summarizing properties of a region and those measuring interactions among regions. Here we pose an unappreciated question in the field: What are the strengths and limitations of each approach to study fundamental neural processes? We explore the relative utility of region- and connection-based measures in the context of three topics of interest: neurobiological relevance, brain-behavior relationships, and individual differences in brain organization. In each section, we offer illustrative examples. We hope that this discussion offers a novel and useful framework to support efforts to better understand the macroscale functional organization of the brain and how it relates to behavior.


2020 ◽  
Vol 6 (2) ◽  
pp. 92-105
Author(s):  
Gang Wu ◽  
Marc D. Ruben ◽  
Yinyeng Lee ◽  
Jiajia Li ◽  
Michael E. Hughes ◽  
...  

Transcriptome profiling at different times of day is powerful for studying circadian regulation in model organisms and humans. To date, 24 h profiles from many tissue types suggest that about half of all genes are circadian-expressed somewhere in the body. However, few of these studies focused on the brain. Thus, despite known links between circadian disruption and neurological disease, we have virtually no mechanistic understanding. In the coming decade, we expect more genome-wide studies of time of day in different brain diseases, regions, and cell types. We expect just as many different approaches to the design and analysis of these studies. This review considers key principles of circadian tran scriptomics, with the goal of maximizing utility and reproducibility of future studies in the nervous system.


2018 ◽  
Author(s):  
John W. Wizeman ◽  
Qiuxia Guo ◽  
Elliot Wilion ◽  
James Y.H. Li

SUMMARYWe applied single-cell RNA sequencing to profile genome-wide gene expression in about 9,400 individual cerebellar cells from the mouse embryo at embryonic day 13.5. Reiterative clustering identified the major cerebellar cell types and subpopulations of different lineages. Through pseudotemporal ordering to reconstruct developmental trajectories, we identified novel transcriptional programs controlling cell fate specification of populations arising from the ventricular zone and the anterior rhombic lip, two distinct germinal zones of the embryonic cerebellum. Together, our data revealed cell-specific markers for studying the cerebellum, important specification decisions, and a number of previously unknown subpopulations that may play an integral role in the formation and function of the cerebellum. Importantly, we identified a potential mechanism of vermis formation, which is affected by multiple congenital cerebellar defects. Our findings will facilitate new discovery by providing insights into the molecular and cell type diversity in the developing cerebellum.


2020 ◽  
Author(s):  
Arnau Sans-Dublanc ◽  
Anna Chrzanowska ◽  
Katja Reinhard ◽  
Dani Lemmon ◽  
Gabriel Montaldo ◽  
...  

AbstractNeuronal cell-types are arranged in brain-wide circuits to guide behavior. In mice, the superior colliculus is comprised of a set of cell-types that each innervate distinct downstream targets. Here we reveal the brain-wide networks downstream of four collicular cell-types by combining functional ultrasound imaging (fUSi) with optogenetics to monitor neural activity at a resolution of ~100 μm. Each neuronal group triggered different behaviors, and activated distinct, partially overlapping sets of brain nuclei. This included regions not previously thought to mediate defensive behaviors, e.g. the posterior paralaminar nuclei of the thalamus (PPnT), that we show to play a role in suppressing habituation. Electrophysiological recordings support the fUSi findings and show that neurons in the downstream nuclei preferentially respond to innately threatening visual stimuli. This work provides insight into the functional organization of the networks governing defensive behaviors and demonstrates an experimental approach to explore the whole-brain neuronal activity downstream of targeted cell-types.


2020 ◽  
Author(s):  
Zeus Gracia-Tabuenca ◽  
Martha Beatriz Moreno ◽  
Fernando Barrios ◽  
Sarael Alcauter

AbstractAdolescence is a developmental period that dramatically impacts body and behavior, with pubertal hormones playing an important role not only in the morphological changes in the body but also in brain structure and function. Understanding brain development during adolescence has become a priority in neuroscience because it coincides with the onset of many psychiatric and behavioral disorders. However, little is known about how puberty influences the brain functional connectome. In this study, taking a longitudinal human sample of typically developing children and adolescents (of both sexes), we demonstrate that the development of the brain functional connectome better fits pubertal status than chronological age. In particular, centrality, segregation, efficiency, and integration of the brain functional connectome increase after the onset of the pubertal markers. We found that these effects are stronger in attention and task control networks. Lastly, after controlling for this effect, we showed that functional connectivity between these networks is related to better performance in cognitive flexibility. This study points out the importance of considering longitudinal nonlinear trends when exploring developmental trajectories, and emphasizes the impact of puberty on the functional organization of the brain in adolescence.Significance StatementUnderstanding the brain organization along development is a crucial challenge for Neuroscience. In particular, during adolescence there is a great impact in body and cognitive functions as well as substantial incidence of mental health disruptions. Here, we tested how brain organization changes along this period based on the properties of the functional connectome in a longitudinal pediatric sample. We found a nonlinear increase in the connectivity and the brain network efficiency, particularly after the onset of puberty. These effects were more prominent in association networks. In addition, higher connectivity in those areas was associated with better performance in cognitive flexibility. These results demonstrate the importance of considering pubertal assessment as well as nonlinear trends in developmental studies.


Cephalalgia ◽  
2004 ◽  
Vol 24 (5) ◽  
pp. 339-346 ◽  
Author(s):  
NA Endicott

The purpose of this study was to examine the relationship between the patterns of functional organization of the brain, as evaluated by the number of anomalous brain conditions or phenomena (ABCP), and the prevalence of migraine in a group of 434 women with lifetime major depressive disorder. ABCP are conditions or phenomena which are clearly related to brain function whose prevalence significantly deviates from the statistical mean for the general population. Eighteen ABCP (e.g. mixed or left handedness, enuresis after age 5, learning and speech disorders) were used in this study as ‘markers’ for their associated patterns of functional brain organization. The relationship between the number of ABCP and the prevalence of migraine was highly significant. The correlation between the number of ABCP and the prevalence of migraine was 0.36 ( P < 0.0001, confidence interval 0.26, 0.43). The prevalence of migraine in patients with no ABCP ( n = 11) was 9%, while that of those with eight or more ABCP ( n = 40) was 85%. This supports the hypothesis that there is a relationship between patterns of functional brain organization and migraine prevalence.


Sign in / Sign up

Export Citation Format

Share Document