scholarly journals Modeling the effects of EMT-immune dynamics on carcinoma disease progression

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Daniel R. Bergman ◽  
Matthew K. Karikomi ◽  
Min Yu ◽  
Qing Nie ◽  
Adam L. MacLean

AbstractDuring progression from carcinoma in situ to an invasive tumor, the immune system is engaged in complex sets of interactions with various tumor cells. Tumor cell plasticity alters disease trajectories via epithelial-to-mesenchymal transition (EMT). Several of the same pathways that regulate EMT are involved in tumor-immune interactions, yet little is known about the mechanisms and consequences of crosstalk between these regulatory processes. Here we introduce a multiscale evolutionary model to describe tumor-immune-EMT interactions and their impact on epithelial cancer progression from in situ to invasive disease. Through simulation of patient cohorts in silico, the model predicts that a controllable region maximizes invasion-free survival. This controllable region depends on properties of the mesenchymal tumor cell phenotype: its growth rate and its immune-evasiveness. In light of the model predictions, we analyze EMT-inflammation-associated data from The Cancer Genome Atlas, and find that association with EMT worsens invasion-free survival probabilities. This result supports the predictions of the model, and leads to the identification of genes that influence outcomes in bladder and uterine cancer, including FGF pathway members. These results suggest new means to delay disease progression, and demonstrate the importance of studying cancer-immune interactions in light of EMT.

2019 ◽  
Author(s):  
Daniel R. Bergman ◽  
Matthew K. Karikomi ◽  
Min Yu ◽  
Qing Nie ◽  
Adam L. MacLean

During progression from carcinoma in situ to an invasive tumor, the immune system is engaged in complex sets of interactions with various tumor cells. Tumor cell plasticity also alters disease trajectories via epithelial-to-mesenchymal transition (EMT). Several of the same pathways that regulate EMT are involved in tumor-immune interactions, yet little is known about the mechanisms and consequences of crosstalk between these regulatory processes. Here we introduce a multiscale evolutionary model to describe tumor-immune-EMT interactions and their impact on epithelial cancer progression from in situ to invasive disease. Through in silico analyses of large patient cohorts, we find controllable regions that maximize invasion-free survival. We identify that delaying tumor progression depends crucially on properties of the mesenchymal tumor cell phenotype: its growth rate and its immune-evasiveness. Through analysis of EMT-inflammation-associated data from The Cancer Genome Atlas, we find that association with EMT significantly worsens invasion-free survival probabilities in support of our model, and we predict new genes influencing outcomes in bladder and uterine cancer, including FGF pathway members. These results offer novel means to delay disease progression by regulating properties of EMT through specific gene interactions, and demonstrate the importance of studying cancer-immune interactions in light of EMT.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1967 ◽  
Author(s):  
Nour Jalaleddine ◽  
Layal El-Hajjar ◽  
Hassan Dakik ◽  
Abdullah Shaito ◽  
Jessica Saliba ◽  
...  

Loss of connexin-mediated cell-cell communication is a hallmark of breast cancer progression. Pannexin1 (PANX1), a glycoprotein that shares structural and functional features with connexins and engages in cell communication with its environment, is highly expressed in breast cancer metastatic foci; however, PANX1 contribution to metastatic progression is still obscure. Here we report elevated expression of PANX1 in different breast cancer (BRCA) subtypes using RNA-seq data from The Cancer Genome Atlas (TCGA). The elevated PANX1 expression correlated with poorer outcomes in TCGA BRCA patients. In addition, gene set enrichment analysis (GSEA) revealed that epithelial-to-mesenchymal transition (EMT) pathway genes correlated positively with PANX1 expression. Pharmacological inhibition of PANX1, in MDA-MB-231 and MCF-7 breast cancer cells, or genetic ablation of PANX1, in MDA-MB-231 cells, reverted the EMT phenotype, as evidenced by decreased expression of EMT markers. In addition, PANX1 inhibition or genetic ablation decreased the invasiveness of MDA-MB-231 cells. Our results suggest PANX1 overexpression in breast cancer is associated with a shift towards an EMT phenotype, in silico and in vitro, attributing to it a tumor-promoting effect, with poorer clinical outcomes in breast cancer patients. This association offers a novel target for breast cancer therapy.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A779-A779
Author(s):  
Michelle Williams ◽  
Jessica Christenson ◽  
Kathleen O’Neill ◽  
Sabrina Hafeez ◽  
Nicole Spoelstra ◽  
...  

BackgroundTo identify novel molecular mechanisms used by triple negative breast cancer (TNBC) to facilitate metastasis, we manipulated oncogenic epithelial-to-mesenchymal transition (EMT) by restoring the microRNA-200c (miR-200c), termed ‘the guardian of the epithelial phenotype.’ We identified several tumor cell catabolizing enzymes, including tryptophan 2,3-dioxygenase (TDO2) and heme oxygenase-1 (HO-1). The Richer lab has published that TDO2 promotes anchorage independent cell survival during TNBC metastasis via its catabolite kynurenine, which also induces CD8+ T cell death. Similarly, published studies have demonstrated that HO-1 supports BC anchorage independent survival. However, effects of the HO-1 catabolite bilirubin on the tumor microenvironment had not been studied. We postulated that TNBC utilize targetable catabolizing enzymes, like HO-1, to simultaneously support tumor cell survival and dampen the anti-tumor immune response.MethodsTo test our hypothesis in an immune competent mouse model, Met-1 mammary carcinoma cells from a late stage MMTV-PyMT tumor were engineered to inducibly express miR-200c. Tumor cell infiltrates were analyzed by immunohistochemistry (IHC), flow cytometry and multispectral fluorescence. RAW264.7 mouse macrophages were cultured with conditioned medium from carcinoma cells ± miR-200c or the HO-1 competitive inhibitor tin mesoporphyrin (SnMP). RAW264.7 macrophages were also treated with 0–20 µM bilirubin and macrophage polarization and efferocytic capacity, the ability to engulf dead tumor cells, were assessed using qRT-PCR and IncuCyte assays.ResultsMiR-200c restoration to Met-1 orthotopic tumors decreased growth by 45% and increased infiltration of CD11c+ dendritic cells and activation, determined by CD44 expression, of CD4+ and CD8+ T cells. While the number of F4/80+ macrophages was unchanged by miR-200c, the percent of M1 anti-tumor macrophages (F4/80+iNOS+/total cells) increased by >6-fold in miR-200c+tumors. RAW264.7 macrophages cultured with conditioned medium from miR-200c-restored mammary carcinoma cells had a 25–95% decrease in M2 pro-tumor genes (Arg1, Il4 and Il13) and a 15–55% increase in M1 genes (Nos2, Tnfa and Cxcl10). A similar decrease in M2 (30–50%) and increase M1 (35–160%) genes was seen in macrophages cultured with conditioned medium from SnMP treated mammary carcinoma cells. Conversely, bilirubin treatment alone enhanced M2 macrophage polarization and inhibited efferocytosis in a dose-dependent manner.ConclusionsUse of miR-200c to reverse EMT revealed that HO-1 promotes simultaneous TNBC cell survival and immune suppression. These studies are the first to show that tumor cell-HO-1 activity and subsequent bilirubin production may alter macrophage function in the tumor microenvironment. This finding could be clinically relevant since HO-1 inhibitors like SnMP are already FDA approved for treatment of other diseases.


2019 ◽  
Vol 20 (14) ◽  
pp. 3492 ◽  
Author(s):  
Rabiatul Adawiyah Razali ◽  
Yogeswaran Lokanathan ◽  
Muhammad Dain Yazid ◽  
Ayu Suraya Ansari ◽  
Aminuddin Bin Saim ◽  
...  

Epithelial-mesenchymal transition (EMT) is a significant dynamic process that causes changes in the phenotype of epithelial cells, changing them from their original phenotype to the mesenchymal cell phenotype. This event can be observed during wound healing process, fibrosis and cancer. EMT-related diseases are usually caused by inflammation that eventually leads to tissue remodeling in the damaged tissue. Prolonged inflammation causes long-term EMT activation that can lead to tissue fibrosis or cancer. Due to activation of EMT by its signaling pathway, therapeutic approaches that modulate that pathway should be explored. Olea europaea (OE) is well-known for its anti-inflammatory effects and abundant beneficial active compounds. These properties are presumed to modulate EMT events. This article reviews recent evidence of the effects of OE and its active compounds on EMT events and EMT-related diseases. Following evidence from the literature, it was shown that OE could modulate TGFβ/SMAD, AKT, ERK, and Wnt/β-catenin pathways in EMT due to a potent active compound that is present therein.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


2019 ◽  
Vol 34 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Gino Marioni ◽  
Lorenzo Nicolè ◽  
Rocco Cappellesso ◽  
Rosario Marchese-Ragona ◽  
Elena Fasanaro ◽  
...  

Aim: The novel primary end-point of the present study was to ascertain β-arrestin-1 expression in a cohort of consecutive patients with laryngeal squamous cell carcinoma (LSCC) with information available on their cigarette-smoking habits. A secondary end-point was to conduct a preliminary clinical and pathological investigation into the possible role of β-arrestin-1 in the epithelial-to-mesenchymal transition (EMT), identified by testing for E-cadherin, Zeb1, and Zeb2 expression, in the setting of LSCC. Methods: The expression of β-arrestin-1, E-cadherin, zeb1, and zeb2 was ascertained in 20 consecutive LSCCs. Results: Statistical analysis showed no significant associations between β-arrestin-1 and EMT (based on the expression of E-cadherin, Zeb1, and Zeb2). The combined effect of nicotine and β-arrestin-1 was significantly associated with a shorter disease-free survival ( P=0.01) in our series of LSCC. This latter result was also confirmed in an independent, publicly available LSCC cohort ( P=0.047). Conclusions: Further investigations on larger series (ideally in prospective settings) are needed before we can consider closer follow-up protocols and/or more aggressive treatments for patients with LSCC and a combination of nicotine exposure and β-arrestin-1 positivity in tumor cells at the time of their diagnosis. Further studies on how β-arrestin functions in cancer via different signaling pathways might reveal potential targets for the treatment of even advanced laryngeal malignancies.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1863
Author(s):  
Mauricio P. Pinto ◽  
Miguel Córdova-Delgado ◽  
Ignacio N. Retamal ◽  
Matías Muñoz-Medel ◽  
M. Loreto Bravo ◽  
...  

Gastric cancer (GC) is a complex and heterogeneous disease. In recent decades, The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG) defined GC molecular subtypes. Unfortunately, these systems require high-cost and complex techniques and consequently their impact in the clinic has remained limited. Additionally, most of these studies are based on European, Asian, or North American GC cohorts. Herein, we report a molecular classification of Chilean GC patients into five subtypes, based on immunohistochemical (IHC) and in situ hybridization (ISH) methods. These were Epstein–Barr virus positive (EBV+), mismatch repair-deficient (MMR-D), epithelial to mesenchymal transition (EMT)-like, and accumulated (p53+) or undetected p53 (p53−). Given its lower costs this system has the potential for clinical applicability. Our results confirm relevant molecular alterations previously reported by TCGA and ACRG. We confirm EBV+ and MMR-D patients had the best prognosis and could be candidates for immunotherapy. Conversely, EMT-like displayed the poorest prognosis; our data suggest FGFR2 or KRAS could serve as potential actionable targets for these patients. Finally, we propose a low-cost step-by-step stratification system for GC patients. To the best of our knowledge, this is the first Latin American report on a molecular classification for GC. Pending further validation, this stratification system could be implemented into the routine clinic


Sign in / Sign up

Export Citation Format

Share Document