scholarly journals Adipose gene expression profiles reveal insights into the adaptation of northern Eurasian semi-domestic reindeer (Rangifer tarandus)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Melak Weldenegodguad ◽  
Kisun Pokharel ◽  
Laura Niiranen ◽  
Päivi Soppela ◽  
Innokentyi Ammosov ◽  
...  

AbstractReindeer (Rangifer tarandus) are semi-domesticated animals adapted to the challenging conditions of northern Eurasia. Adipose tissues play a crucial role in northern animals by altering gene expression in their tissues to regulate energy homoeostasis and thermogenic activity. Here, we perform transcriptome profiling by RNA sequencing of adipose tissues from three different anatomical depots: metacarpal (bone marrow), perirenal, and prescapular fat in Finnish and Even reindeer (in Sakha) during spring and winter. A total of 16,212 genes are expressed in our data. Gene expression profiles in metacarpal tissue are distinct from perirenal and prescapular adipose tissues. Notably, metacarpal adipose tissue appears to have a significant role in the regulation of the energy metabolism of reindeer in spring when their nutritional condition is poor after winter. During spring, genes associated with the immune system are upregulated in the perirenal and prescapular adipose tissue. Blood and tissue parameters reflecting general physiological and metabolic status show less seasonal variation in Even reindeer than in Finnish reindeer. This study identifies candidate genes potentially involved in immune response, fat deposition, and energy metabolism and provides new information on the mechanisms by which reindeer adapt to harsh arctic conditions.

2021 ◽  
Author(s):  
Melak Weldenegodguad ◽  
Kisun Pokharel ◽  
Laura Niiranen ◽  
Päivi Soppela ◽  
Innokentyi Ammosov ◽  
...  

AbstractReindeer (Rangifer tarandus) are semi-domesticated animals adapted to the challenging arctic conditions of northern Eurasia. Adipose tissues play a crucial role in animals living in northern environments by altering gene expression in their tissues to regulate energy homeostasis and thermogenic activity. Here, we performed transcriptome profiling by RNA sequencing of adipose tissues from three different anatomical depots: metacarpal (bone marrow), perirenal, and prescapular fat in Finnish and Even reindeer (in Sakha) during two seasonal time points (spring and winter). On average 36.5 million pair-ended clean reads were obtained for each sample, and a total of 16,362 genes were expressed in our data. Gene expression profiles in metacarpal tissue were distinct and clustered separately from perirenal and prescapular adipose tissues. Notably, metacarpal adipose tissue appeared to have a significant role in the regulation of the energy metabolism of reindeer in spring when their nutritional condition is poor after winter. During spring, when the animals are in less optimal condition, genes associated with the immune system (e.g., CCL2, CCL11, CXCL14, IGSF3, IGHM, IGLC7, IGKC, JCHAIN, and IGSF10) were upregulated in the perirenal and prescapular adipose tissue, while genes involved in energy metabolism (e.g., ACOT2, APOA1, ANGPTL1, ANGPTL8, ELOVL7, MSMO1, PFKFB1, and ST3GAL6) were upregulated in metacarpal tissue. Even reindeer harboured relatively fewer significantly differentially expressed genes than Finnish reindeer, irrespective of the season, possibly owing to climatic and management differences. Moreover, blood and tissue parameters reflecting general physiological and metabolic status showed less seasonal variation in Even reindeer than in Finnish reindeer. This study identified adipose candidate genes potentially involved in immune response, fat deposition, energy metabolism, development, cell growth, and organogenesis. Taken together, this study provides new information on the mechanisms by which reindeer adapt to less optimal arctic conditions.


2005 ◽  
Vol 34 (2) ◽  
pp. 299-315 ◽  
Author(s):  
Young Ho Suh ◽  
Younyoung Kim ◽  
Jeong Hyun Bang ◽  
Kyoung Suk Choi ◽  
June Woo Lee ◽  
...  

Insulin resistance occurs early in the disease process, preceding the development of type 2 diabetes. Therefore, the identification of molecules that contribute to insulin resistance and leading up to type 2 diabetes is important to elucidate the molecular pathogenesis of the disease. To this end, we characterized gene expression profiles from insulin-sensitive tissues, including adipose tissue, skeletal muscle, and liver tissue of Zucker diabetic fatty (ZDF) rats, a well characterized type 2 diabetes animal model. Gene expression profiles from ZDF rats at 6 weeks (pre-diabetes), 12 weeks (diabetes), and 20 weeks (late-stage diabetes) were compared with age- and sex-matched Zucker lean control (ZLC) rats using 5000 cDNA chips. Differentially regulated genes demonstrating > 1.3-fold change at age were identified and categorized through hierarchical clustering analysis. Our results showed that while expression of lipolytic genes was elevated in adipose tissue of diabetic ZDF rats at 12 weeks of age, expression of lipogenic genes was decreased in liver but increased in skeletal muscle of 12 week old diabetic ZDF rats. These results suggest that impairment of hepatic lipogenesis accompanied with the reduced lipogenesis of adipose tissue may contribute to development of diabetes in ZDF rats by increasing lipogenesis in skeletal muscle. Moreover, expression of antioxidant defense genes was decreased in the liver of 12-week old diabetic ZDF rats as well as in the adipose tissue of ZDF rats both at 6 and 12 weeks of age. Cytochrome P450 (CYP) genes were also significantly reduced in 12 week old diabetic liver of ZDF rats. Genes involved in glucose utilization were downregulated in skeletal muscle of diabetic ZDF rats, and the hepatic gluconeogenic gene was upregulated in diabetic ZDF rats. Genes commonly expressed in all three tissue types were also observed. These profilings might provide better fundamental understanding of insulin resistance and development of type 2 diabetes.


2020 ◽  
Author(s):  
Mizuki Honda ◽  
Shinya Oki ◽  
Akihito Harada ◽  
Kazumitsu Maehara ◽  
Kaori Tanaka ◽  
...  

ABSTRACTIn multicellular organisms, individual cells are characterized by their gene expression profiles and the spatial interactions among cells enable the elaboration of complex functions. Expression profiling in spatially defined regions is crucial to elucidate cell interactions and functions. Here, we established a transcriptome profiling method coupled with photo-isolation chemistry (PIC) that allows the determination of expression profiles specifically from photo-irradiated regions of whole tissues. PIC uses photo-caged oligodeoxynucleotides for in situ reverse transcription. After photo-irradiation of limited areas, gene expression was detected from at least 10 cells in the tissue sections. PIC transcriptome analysis detected genes specifically expressed in small distinct areas of the mouse embryo. Thus, PIC enables transcriptome profiles to be determined from limited regions at a spatial resolution up to the diffraction limit.


Author(s):  
Haowei Zhang ◽  
Yujin Ding ◽  
Qin Zeng ◽  
Dandan Wang ◽  
Ganglei Liu ◽  
...  

Background: Mesenteric adipose tissue (MAT) plays a critical role in the intestinal physiological ecosystems. Small and large intestines have evidently intrinsic and distinct characteristics. However, whether there exist any mesenteric differences adjacent to the small and large intestines (SMAT and LMAT) has not been properly characterized. We studied the important facets of these differences, such as morphology, gene expression, cell components and immune regulation of MATs, to characterize the mesenteric differences. Methods: The SMAT and LMAT of mice were utilized for comparison of tissue morphology. Paired mesenteric samples were analyzed by RNA-seq to clarify gene expression profiles. MAT partial excision models were constructed to illustrate the immune regulation roles of MATs, and 16S-seq was applied to detect the subsequent effect on microbiota. Results: Our data show that different segments of mesenteries have different morphological structures. SMAT not only has smaller adipocytes but also contains more fat-associated lymphoid clusters than LMAT. The gene expression profile is also discrepant between these two MATs in mice. B-cell markers were abundantly expressed in SMAT, while development-related genes were highly expressed in LMAT. Adipose-derived stem cells of LMAT exhibited higher adipogenic potential and lower proliferation rates than those of SMAT. In addition, SMAT and LMAT play different roles in immune regulation and subsequently affect microbiota components. Finally, our data clarified the described differences between SMAT and LMAT in humans. Conclusions: There were significant differences in cell morphology, gene expression profiles, cell components, biological characteristics, and immune and microbiota regulation roles between regional MATs.


2019 ◽  
Vol 120 (7) ◽  
pp. 11842-11852 ◽  
Author(s):  
Simone Ortiz Moura Fideles ◽  
Adriana Cassia Ortiz ◽  
Amanda Freire Assis ◽  
Max Jordan Duarte ◽  
Fabiola Singaretti Oliveira ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e83363 ◽  
Author(s):  
Dae Seong Kim ◽  
Myoung Woo Lee ◽  
Keon Hee Yoo ◽  
Tae-Hee Lee ◽  
Hye Jin Kim ◽  
...  

2019 ◽  
Author(s):  
Matthew D. Barberio ◽  
Evan P. Nadler ◽  
Samantha Sevilla ◽  
Rosemary Lu ◽  
Brennan Harmon ◽  
...  

AbstractBackgroundEpigenetic changes in visceral adipose tissue (VAT) with obesity and their effects on gene expression are poorly understood, especially during emergent obesity in youth. The current study tested the hypothesis that methylation and gene expression profiles of key growth factor and inflammatory pathways such as PI3K/AKT signaling are altered in VAT from obese compared to non-obese youth.MethodsVAT samples from adolescent females grouped as Lean (L; n=15; age=15±3 yrs, BMI=21.9±3.0 kg/m2) or Obese (Ob; n=15, age=16±2 yrs, BMI=45.8±9.8 kg/m2) were collected. Global methylation (n=20) and gene expression (N=30) patterns were profiled via microarray and interrogated for differences between groups by ANCOVA (p<0.05), followed by biological pathway analysis.ResultsOverlapping differences in methylation and gene expression in 317 genes were found in VAT from obese compared to lean groups. PI3K/AKT Signaling (p=1.83×10−6; 10/121 molecules in dataset/pathway) was significantly overrepresented in Ob VAT according to pathway analysis. mRNA upregulations in the PI3K/AKT Signaling Pathway genes TFAM (p=0.03; Fold change=1.8) and PPP2R5C (p=0.03, FC=2.6) were confirmed via qRT-PCR.ConclusionOur analyses show obesity-related differences in DNA methylation and gene expression in visceral adipose tissue of adolescent females. Specifically, we identified methylation site/gene expression pairs differentially regulated and mapped these differences to PI3K/AKT signaling, suggesting that PI3K/AKT signaling pathway dysfunction in obesity may be driven in part by obesity-related changes in DNA methylation.


Sign in / Sign up

Export Citation Format

Share Document