scholarly journals Genome of the estuarine oyster provides insights into climate impact and adaptive plasticity

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ao Li ◽  
He Dai ◽  
Ximing Guo ◽  
Ziyan Zhang ◽  
Kexin Zhang ◽  
...  

AbstractUnderstanding the roles of genetic divergence and phenotypic plasticity in adaptation is central to evolutionary biology and important for assessing adaptive potential of species under climate change. Analysis of a chromosome-level assembly and resequencing of individuals across wide latitude distribution in the estuarine oyster (Crassostrea ariakensis) revealed unexpectedly low genomic diversity and population structures shaped by historical glaciation, geological events and oceanographic forces. Strong selection signals were detected in genes responding to temperature and salinity stress, especially of the expanded solute carrier families, highlighting the importance of gene expansion in environmental adaptation. Genes exhibiting high plasticity showed strong selection in upstream regulatory regions that modulate transcription, indicating selection favoring plasticity. Our findings suggest that genomic variation and population structure in marine bivalves are heavily influenced by climate history and physical forces, and gene expansion and selection may enhance phenotypic plasticity that is critical for the adaptation to rapidly changing environments.

2021 ◽  
Author(s):  
Ao Li ◽  
He Dai ◽  
Ximing Guo ◽  
Ziyan Zhang ◽  
Kexin Zhang ◽  
...  

AbstractUnderstanding the roles of genetic divergence and phenotypic plasticity in adaptation is central to evolutionary biology and important for assessing adaptive potential of species under climate change. Analysis of a chromosome-level assembly and resequencing of individuals across wide latitude distribution in the estuarine oyster (Crassostrea ariakensis) revealed unexpectedly low genomic diversity and population structures shaped by historical glaciation, geological events and oceanographic forces. Strong selection signals were detected in genes responding to temperature and salinity stress, especially of the expanded solute carrier families, highlighting the significance of gene expansion in environmental adaptation. Genes exhibiting high plasticity showed strong selection in upstream regulatory regions that modulate transcription, indicating selection favoring plasticity. Our findings suggest that genomic variation and population structure in marine bivalves are heavily influenced by climate history and physical forces, and gene expansion and selection may enhance phenotypic plasticity that is critical for the adaptation to rapidly changing environments.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoting Xia ◽  
Shunjin Zhang ◽  
Huaju Zhang ◽  
Zijing Zhang ◽  
Ningbo Chen ◽  
...  

Abstract Background Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle. Results The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, FST and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (FST and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6). Conclusion We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Cynthia R. Adams ◽  
Vicki S. Blazer ◽  
Jim Sherry ◽  
Robert Scott Cornman ◽  
Luke R. Iwanowicz

Hepatitis B viruses belong to a family of circular, double-stranded DNA viruses that infect a range of organisms, with host responses that vary from mild infection to chronic infection and cancer. The white sucker hepatitis B virus (WSHBV) was first described in the white sucker (Catostomus commersonii), a freshwater teleost, and belongs to the genus Parahepadnavirus. At present, the host range of WSHBV and its impact on fish health are unknown, and neither genetic diversity nor association with fish health have been studied in any parahepadnavirus. Given the relevance of genomic diversity to disease outcome for the orthohepadnaviruses, we sought to characterize genomic variation in WSHBV and determine how it is structured among watersheds. We identified WSHBV-positive white sucker inhabiting tributaries of Lake Michigan, Lake Superior, Lake Erie (USA), and Lake Athabasca (Canada). Copy number in plasma and in liver tissue was estimated via qPCR. Templates from 27 virus-positive fish were amplified and sequenced using a primer-specific, circular long-range amplification method coupled with amplicon sequencing on the Illumina MiSeq. Phylogenetic analysis of the WSHBV genome identified phylogeographical clustering reminiscent of that observed with human hepatitis B virus genotypes. Notably, most non-synonymous substitutions were found to cluster in the pre-S/spacer overlap region, which is relevant for both viral entry and replication. The observed predominance of p1/s3 mutations in this region is indicative of adaptive change in the polymerase open reading frame (ORF), while, at the same time, the surface ORF is under purifying selection. Although the levels of variation we observed do not meet the criteria used to define sub/genotypes of human and avian hepadnaviruses, we identified geographically associated genome variation in the pre-S and spacer domain sufficient to define five WSHBV haplotypes. This study of WSHBV genetic diversity should facilitate the development of molecular markers for future identification of genotypes and provide evidence in future investigations of possible differential disease outcomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashley Osborne ◽  
Emilia Manko ◽  
Mika Takeda ◽  
Akira Kaneko ◽  
Wataru Kagaya ◽  
...  

AbstractCharacterising the genomic variation and population dynamics of Plasmodium falciparum parasites in high transmission regions of Sub-Saharan Africa is crucial to the long-term efficacy of regional malaria elimination campaigns and eradication. Whole-genome sequencing (WGS) technologies can contribute towards understanding the epidemiology and structural variation landscape of P. falciparum populations, including those within the Lake Victoria basin, a region of intense transmission. Here we provide a baseline assessment of the genomic diversity of P. falciparum isolates in the Lake region of Kenya, which has sparse genetic data. Lake region isolates are placed within the context of African-wide populations using Illumina WGS data and population genomic analyses. Our analysis revealed that P. falciparum isolates from Lake Victoria form a cluster within the East African parasite population. These isolates also appear to have distinct ancestral origins, containing genome-wide signatures from both Central and East African lineages. Known drug resistance biomarkers were observed at similar frequencies to those of East African parasite populations, including the S160N/T mutation in the pfap2mu gene, which has been associated with delayed clearance by artemisinin-based combination therapy. Overall, our work provides a first assessment of P. falciparum genetic diversity within the Lake Victoria basin, a region targeting malaria elimination.


2021 ◽  
Vol 4 ◽  
Author(s):  
Karolina Bacela-Spychalska ◽  
Annette Taugbøl ◽  
Wiesław Babik ◽  
Maciej Pabijan ◽  
David Strand ◽  
...  

Pond ecosystems are hotspots of freshwater biodiversity, often containing many rare and protected species that are not commonly found elsewhere (Harper et al. 2018;Harper et al. 2019). However, even if they constitute c.a. 30% of freshwaters by area, still not enough effort has been put into pond monitoring and management and pond ecosystems are hence relatively poorly understood. Results of ECOPOND project will lead to add valuable knowledge upon pond diversity in geographic gradient taking for consideration human impact by comparing rural and urban areas. The sample design in ECOPOND includes six geographic regions, spanning from the south of Poland to the middle of Norway, where we will sample five replicates of urban and rural ponds in close geographic proximity, making it possible to test the impact of urbanization on biodiversity and biotic homogenization across latitude. We will sample all ponds at spring and late summer, making it possible to assess also seasonality in biodiversity. ECOPOND will utilize environmental DNA and RNA to perform biodiversity screening. The extracted eDNA and eRNA fragments will be amplified with the use of several selected markers for vertebrates, invertebrates, fungi and bacteria. Comparisons between eDNA and eRNA metabarcoding are hypothesized to allow inference between present and past diversity, as eRNA is thought to be only available from live organisms in the community. Moreover, ECOPOND aims at testing the effects of selected invasives species that can have on whole ecosystems. By sampling a range of biotic and abiotic parameters describing studied ponds, we will incorporate the available data for the ponds and employ occupancy modelling methods to assess the habitat preferences of selected invasive alien species. Then we will develop a method that can contribute towards an earlywarning system of evaluating threats to ecosystem status. One of the focus species will be the parasitic fungus Batrachochytrium dendrobatidis (Bd), an infectious fungal pathogen that has caused a number of amphibian declines and extinctions. The European amphibians seem less affected by the parasite at present. However, the fungi could be a direct driver of reduced genetic variation due to selection, or directly reduce the infected amphibian’s overall fitness by reducing the microbiotic diversity on their skin, which in many cases acts as a second immune system. ECOPOND will therefore provide data on genomic variation (using RADseq) for two amphibian species: the smooth newt (Lissotriton vulgaris) and the common toad (Bufo bufo). We will investigate populations of these species inhabiting ponds that are infected and not infected by Bd as well as collect data on their skin microbes (identified using metabarcoding). We will also contrast the genomic diversity between the replicated urban/rural setup and look for repeatable genomic changes. This setup will also be compared for the genomic variation for a potential native prey, the blue-tailed dragonfly, as will ponds with and without fish and/or amphibians (possibly also comparing between native and IAS top-predators) in order to look for predatory selective sweeps in the genome and transcriptome (experimental setup). All ponds will also be analyzed for over 20 water quality parameters and include data on a range of site characteristics that will be used as explanatory variables in all models. ECOPOND will compare large datasets across large geographic regions and will provide detailed knowledge of biodiversity patterns in vertebrates, invertebrates, fungal and microbial species, as well as genomic composition and skin biodiversity for animals inhabiting the same ponds set in an urban context. As a total, ECOPOND will obtain data on the location and status of biodiversity interests, gather data that can help in preventing the establishment of invasive alien species, and eradicating or controlling species that have already become established. And finally, ECOPOND will work closely with stakeholders and develop statistical techniques that can be used for monitoring, detection and protection of biodiversity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jinniu Wang ◽  
Jing Gao ◽  
Yan Wu ◽  
Bo Xu ◽  
Fusun Shi ◽  
...  

Phenotypic plasticity among natural plant populations is a species-specific ecological phenomenon of paramount importance that depends on their life forms, development stages, as well as environmental factors. While this phenomenon is broadly understood, it has hardly been observed in nature. This study aimed at understanding phenotypic plasticity and ecological adaptability in three shrubs (Salix etosia, Rubus setchuenensis, and Hydrangea aspera) affected by potential environmental variables after deforesting in sparse Larix spp. forest and tall shrub mixed secondary forests. Soil organic carbon content, total nitrogen content, and available nitrogen content were greater outside the forests, contrary to other measured factors whose availability was higher in the forest interiors. In case of leaf traits and stoichiometric indicators, there were significant interactions of leaf area (LA), leaf dry matter (DW), specific leaf area (SLA), and leaf phosphorus content (LPC) between shrub species and heterogeneous environments (P < 0.05) but not for leaf C/N, N/P, and C/P. Principal components analysis (PCA) indicated that soil temperature, pH value, soil carbon content, soil nitrogen content, and MBC and MBN mainly constituted the first component. Summarized results indicated that TB and leaf C/P of S. etosia were significantly correlated with three principal components, but only marginal significant correlations existed between R/S and relevant components. SLA and R/S of R. setchuenensis had marginal significant relationships with independent variables. Both SLA and TB of H. aspera were significantly correlated with three principal components. Based on the pooled values of leaf functional traits and leaf stoichiometric indicators, R. setchuenensis (vining type) had better leaf traits plasticity to adapt to a heterogeneous environment. In descending order, the ranks of biomass allocation plasticity index of three shrubs were H. aspera (bunch type), R. setchuenensis (vining type), and S. etosia (erect type). The highest integrated plasticity values of leaf traits and biomass allocation was observed in H. aspera (bunch type), followed by R. setchuenensis, and by S. etosia with less adaptive plasticity in heterogeneous environments.


2019 ◽  
Author(s):  
Lewis G. Spurgin ◽  
Mirte Bosse ◽  
Frank Adriaensen ◽  
Tamer Albayrak ◽  
Christos Barboutis ◽  
...  

AbstractA major aim of evolutionary biology is to understand why patterns of genomic diversity vary among populations and species. Large-scale genomic studies of widespread species are useful for studying how the environment and demographic history shape patterns of genomic divergence, and with the continually decreasing cost of sequencing and genotyping, such studies are now becoming feasible. Here, we carry out one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning almost the entire geographic range of the European great tit subspecies. We found that genome-wide variation was consistent with a recent colonisation across Europe from a single refugium in South-East Europe, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear “islands of differentiation” even among populations with very low levels of genome-wide differentiation. Low local recombination rate in the genome was a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination is a key driver of highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, most likely as a result of recent directional selection at the range edges of this species. Haplotype-based measures of selection were also related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. These regions under positive selection contained candidate genes associated with morphology, thermal adaptation and colouration, providing promising avenues for future investigation. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into evolution.


2019 ◽  
Vol 6 (7) ◽  
pp. 181382
Author(s):  
Siti Norsyuhada Kamaluddin ◽  
Mikiko Tanaka ◽  
Hikaru Wakamori ◽  
Takeshi Nishimura ◽  
Tsuyoshi Ito

Despite the accumulating evidence suggesting the importance of phenotypic plasticity in diversification and adaptation, little is known about plastic variation in primate skulls. The present study evaluated the plastic variation of the mandible in Japanese macaques by comparing wild and captive specimens. The results showed that captive individuals are square-jawed with relatively longer tooth rows than wild individuals. We also found that this shape change resembles the sexual dimorphism, indicating that the mandibles of captive individuals are to some extent masculinized. By contrast, the mandible morphology was not clearly explained by ecogeographical factors. These findings suggest the possibility that perturbations in the social environment in captivity and resulting changes of androgenic hormones may have influenced the development of mandible shape. As the high plasticity of social properties is well known in wild primates, social environment may cause the inter- and intra-population diversity of skull morphology, even in the wild. The captive–wild morphological difference detected in this study, however, can also be possibly formed by other untested sources of variation (e.g. inter-population genetic variation), and therefore this hypothesis should be validated further.


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 220 ◽  
Author(s):  
Cas Retel ◽  
Hanna Märkle ◽  
Lutz Becks ◽  
Philine Feulner

The contemporary genomic diversity of viruses is a result of the continuous and dynamic interaction of past ecological and evolutionary processes. Thus, genome sequences of viruses can be a valuable source of information about these processes. In this review, we first describe the relevant processes shaping viral genomic variation, with a focus on the role of host–virus coevolution and its potential to give rise to eco-evolutionary feedback loops. We further give a brief overview of available methodology designed to extract information about these processes from genomic data. Short generation times and small genomes make viruses ideal model systems to study the joint effect of complex coevolutionary and eco-evolutionary interactions on genetic evolution. This complexity, together with the diverse array of lifetime and reproductive strategies in viruses ask for extensions of existing inference methods, for example by integrating multiple information sources. Such integration can broaden the applicability of genetic inference methods and thus further improve our understanding of the role viruses play in biological communities.


2013 ◽  
Vol 61 (8) ◽  
pp. 592 ◽  
Author(s):  
Ana Silvia Franco Pinheiro Moreira ◽  
Ana Clara Luppi Queiroz ◽  
Fernanda de Vasconcelos Barros ◽  
Maíra Figueiredo Goulart ◽  
José Pires de Lemos-Filho

The phenotypic plasticity to light of two congeneric species of leguminous trees from distinct habitats was evaluated in a common-garden experiment. For that, we assessed the following two groups of leaf morphological and anatomical traits of 1-year-old seedlings: (1) traits related to light interception (tissues thickness and leaflet mass per area), and (2) traits related to gas exchange (number of leaflets per leaf and measurements of stomatal size and density). Dalbergia nigra (Vell.) Allemão ex Benth. is an endemic Atlantic forest species, and D. miscolobium Benth. is a typical cerrado species. Both were grown under shade and full-sunlight conditions. The phenotypic plasticity of leaves was determined by a relative distance plasticity index (RDPI). For both species, sun leaflets were thicker than shade ones, and only D. nigra presented lower values for stomatal density (nst), percentage of the leaflet area occupied by stomatal pores (nast) and estimated stomatal conductance (gst) under shade conditions. The forest species (D. nigra) had higher plasticity for variables related to gas exchange (number of leaflets per leaf, nst, ast, nast and gst), whereas the cerrado species (D. miscolobium) had higher plasticity for variables related to light interception, such as leaflet mass per area, leaflet thickness and palisade and spongy parenchyma thickness. The degree of plasticity was different for each analysed parameter, and not used to define which species is more plastic. The leaf traits of D. nigra and D. miscolobium that showed high plasticity were related to resources that are not limiting to improve its photosynthesis in a changing light environment.


Sign in / Sign up

Export Citation Format

Share Document