scholarly journals Hand-portable HPLC with broadband spectral detection enables analysis of complex polycyclic aromatic hydrocarbon mixtures

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Stelios Chatzimichail ◽  
Faraz Rahimi ◽  
Aliyah Saifuddin ◽  
Andrew J. Surman ◽  
Simon D. Taylor-Robinson ◽  
...  

AbstractPolycyclic aromatic hydrocarbons (PAHs) are considered priority hazardous substances due to their carcinogenic activity and risk to public health. Strict regulations are in place limiting their release into the environment, but enforcement is hampered by a lack of adequate field-testing procedure, instead relying on sending samples to centralised analytical facilities. Reliably monitoring levels of PAHs in the field is a challenge, owing to the lack of field-deployable analytical methods able to separate, identify, and quantify the complex mixtures in which PAHs are typically observed. Here, we report the development of a hand-portable system based on high-performance liquid chromatography incorporating a spectrally wide absorption detector, capable of fingerprinting PAHs based on their characteristic spectral absorption profiles: identifying 100% of the 24 PAHs tested, including full coverage of the United States Environmental Protection Agency priority pollutant list. We report unsupervised methods to exploit these new capabilities for feature detection and identification, robust enough to detect and classify co-eluting and hidden peaks. Identification is fully independent of their characteristic retention times, mitigating matrix effects which can preclude reliable determination of these analytes in challenging samples. We anticipate the platform to enable more sophisticated analytical measurements, supporting real-time decision making in the field.

Author(s):  
Rodrigo Mundo ◽  
Tetsuya Matsunaka ◽  
Hisanori Iwai ◽  
Shouzo Ogiso ◽  
Nobuo Suzuki ◽  
...  

To improve the understanding of the emission sources and pathways of polycyclic aromatic hydrocarbons (PAHs) in the coastal environments of remote areas, their particulate and dissolved concentrations were analyzed on a monthly basis from 2015 to 2018 in surface waters of Nanao Bay, Japan. The concentration of the targeted 13 species of PAHs on the United States Environmental Protection Agency (USEPA) priority pollutant list in dissolved and particle phases were separately analyzed by high-performance liquid chromatography (HPLC) coupled to a fluorescence detector. Particulate and dissolved PAHs had average concentrations of 0.72 ng∙L−1 and 0.95 ng∙L−1, respectively. While most of the samples were lower than 1 ng∙L−1, abnormally high levels up to 10 ng∙L−1 were observed in the winter of 2017–2018 for particulate PAHs. Based on the isomer ratios of Flu to Flu plus Pyr, it was possible to determine that the pyrogenic loads were greater than the petrogenic loads in all but four out of 86 samples. The predominant environmental pathway for PAHs in winter was determined to be long-range atmospheric transportation fed by the East Asian winter monsoon, while for the summer, local sources were more relevant. By the risk quotients method, it was determined that PAHs in surface seawater presented a very low risk to marine life during the interannual survey.


2020 ◽  
Author(s):  
Dalila Serpa ◽  
Ana I. Machado ◽  
Martha Santos ◽  
Isabel Campos ◽  
Bruna R. F. Oliveira ◽  
...  

<p>Wildfires constitute a diffuse source of contamination to aquatic ecosystems. In burnt areas, the increase in surface runoff and associated sediment losses after fire, promotes the mobilization of hazardous substances, such as metals and polycyclic aromatic hydrocarbons (PAHs), posing a risk for the adjacent water bodies. In the present study, post-fire metals and PAHs export by surface runoff was evaluated in 16 m<sup>2 </sup>bounded plots in a eucalypt stand in Albergaria-a-Velha (Aveiro district, North-Central Portugal) burnt in September 2019. Runoff samples were collected on a weekly to bi-weekly basis, depending on the occurrence of rainfall, during the first 6 months after fire. The metals analyzed in this study were, vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). As for PAHs, the analyses focused on the 16 compounds classified as priority pollutants by the United States Environmental Protection Agency. Both dissolved and particulate fractions of metals and PAHs in runoff waters were analysed in this work. Preliminary results suggest that metals are more likely to affect the water quality of fire-affected water bodies than PAHs, since low levels of PAHs were found in runoff waters. This work provides valuable information for water managers to minimize the risks of wildfires both to the environment and to public health.</p>


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1815 ◽  
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Karolina Lewińska ◽  
Elton Mammadov ◽  
Anna Karczewska ◽  
Bożena Smreczak ◽  
...  

The aim of this study was to identify and examine the levels of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) in soil collected from the surroundings of historical pesticide storage facilities on former agricultural aerodromes, warehouses, and pesticide distribution sites located in the most important agricultural regions in Azerbaijan. The conducted research included determination of three groups of POPs (occurring together), in the natural soil environment influenced for many years by abiotic and biotic factors that could have caused their transformations or decomposition. In this study, soil samples were collected in 21 georeferenced points located in the administrative area of Bilasuvar, Saatly, Sabirabad, Salyan and Jalilabad districts of Azerbaijan. Soil chemical analysis involved determination of organochlorine compounds (OCP): hexachlorocyclohexanes (HCHs) (three isomers α-HCH, β-HCH and γ-HCH) and dichlorodiphenyltrichloroethanes (DDTs) (six congeners 2,4′DDT; 4,4′DDT; 2,4′DDE; 4,4′DDE; 2,4′DDE; and 4,4′DDE); polycyclic aromatic hydrocarbons (PAHs): 16 compounds from the United States Environmental Protection Agency US EPA list and, PCBs (seven congeners identified with the following IUPAC numbers: 28, 52, 101, 118, 138, 153, and 180). Our research showed that OCPs reached the highest concentration in the studied areas. The total concentrations of OCPs ranged from 0.01 to 21,888 mg∙kg−1 with significantly higher concentrations of Σ6DDTs (0.01 μg kg−1 to 21880 mg kg−1) compared to ΣHCH (0.14 ng kg−1 to 166.72 µg kg−1). The total concentrations of PCBs in the studied soils was varied from 0.02 to 147.30 μg·kg−1 but only PCB138 and PCB180 were detected in all analyzed samples. The concentrations of Σ16 PAHs were also strongly diversified throughout the sampling areas and ranged from 0.15 to 16,026 mg kg−1. The obtained results confirmed that the agricultural soils of Azerbaijan contained much lower (up to by three orders of magnitude) concentrations of PCBs and PAHs than DDT. It is supported by the fact that PCBs and PAHs were not directly used by agriculture sector and their content results from secondary sources, such as combustion and various industrial processes. Moreover, the high concentrations of PAHs in studied soils were associated with their location in direct neighborhood of the airport, as well as with accumulation of contaminants from dispersed sources and long range transport. The high concentrations of pesticides confirm that deposition of parent OCPs have occurred from obsolete pesticide landfills.


2018 ◽  
Vol 13 (No. 2) ◽  
pp. 74-82 ◽  
Author(s):  
S. Kuang ◽  
Y. Su ◽  
J. Zhang ◽  
Z. Song ◽  
H. Wang ◽  
...  

The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), which are on the United States Environmental Protection Agency (US EPA) priority pollutant list, were studied in ten different soil samples from Shengli Oil Field, China. The total PAHs concentrations in the sampled soils attained 1214.9–2965.1 ng/g (2159.6 ng/g on average). The highest total PAHs concentration was in the soil with a huge content of oil sludge, while the lowest was in fine soil environment areas. The soil contamination with PAHs in the study areas was classified as severe. The major pollutants were naphthalene, phenathrene, fluorine (Flu), pyrene (Pyr), while the detected concentration of benzo(a)pyrene (BaP), benzo(b)fluoranthene was relatively low. Among the 16 kinds of PAHs, the concentration increased in the order: 6 rings < 5 rings < 4 rings < 2 rings < 3 rings. The ratios of Flu/(Flu + Pyr) and indeno benzene(1,2,3-c,d)pyrene (IP)/(IP + BaP) were 0.46–0.48, and 0.36–0.64, respectively. Our results suggest that the main sources of PAHs were petroleum extraction and petroleum combustion. In addition, a small amount of PAHs originated from combustion of grass, woods, and coal.  


2020 ◽  
Vol 12 (1) ◽  
pp. 531-543
Author(s):  
Pedro José Sanches Filho ◽  
Julia Arduim ◽  
Glauco Rasmussen Betemps ◽  
Gabriela Oliveira Andrade ◽  
Ricardo Correa da Silva da Silva

This study evaluates the presence and levels of polycyclic aromatic hydrocarbons (PAHs) in Achyrocline Satureioides (inflorescences and infusions) using extraction under ultrasound accompanied by clean up with solid phase extraction (SPE) and gas chromatography coupled to mass spectrometry. Sixteen priority PAHs were listed as priority contaminants by the United States Environmental Protection Agency and PAHs (Benzo(a)Anthracene, Chrysene, Benzo(b)Fluoranthene, Benzo(a)Pyrene) were chosen as indicators by the European Food Safety Agency for the presence of PAHs in food. The HPAs concentrations ranged from 48.1 µg Kg-1 ± 1.4% to 48.8 µg Kg-1 ± 1.9% in Achyrocline Satureioides inflorescences. The total concentration in infusions of PAHs was 2.5 µg L-1 ± 6.3%. The sum of the priority PAHs in Achyrocline Satureioides samples ranged from 126.8 µg Kg-1 ± 13.6% and 218.9 µg Kg-1 ± 16.1% and infusion had a value of 10.0 µg L-1 ± 8.1%. The PAH concentrations in tea infusions are lower when compared with other food matrices, but the migration of these compounds for tea is high, resulting in levels that may cause damage to health.


2005 ◽  
Vol 2005 (1) ◽  
pp. 107-110
Author(s):  
Jereme M. Altendorf

ABSTRACT NEPA is a policy and procedural statute that makes environmental protection a part of the mandate of every federal agency and department. NEPA was enacted to establish a framework for public review of the environmental impacts of actions carried out by the federal government. NEPA anticipates that most federal actions are planned in detail and are implemented over the course of months or years. This planning and implementation cycle, allows detailed analysis of specific project impacts. Environmental response actions taken by the United States Environmental Protection Agency (EPA) or the United States Coast Guard (CG) under the regulatory authorities established by the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) are also considered specific federal actions. However, the nature of these specific actions varies greatly depending on the exact nature of each incident; therefore traditional NEPA planning is neither possible nor appropriate. The NCP establishes a mechanism of continuous environmental assessment and review through the network of Regional Response Teams (RRT), local emergency area planning committees, Area Contingency Planning (ACP) Committees, and the availability of local area contingency plans to the public on a contingency basis for review or comment. Federal courts have allowed functional equivalence doctrine to apply exclusively to EPA because of their adherence to “substantive and procedural standards ensuring full and adequate consideration of environmental issues.” These decisions have held up the interpretation that NEPA compliance is unnecessary where the agency is independently required to consider environmental issues. The EPA and the CG share the responsibility of protecting public health, welfare, and environment from discharges or threats of discharges of oil and/or releases or threats of a releases of hazardous substances, pollutants and/or contaminants under the planning, preparedness, and response scheme established by the NCP and carried out by those working within the National Response System (NRS). For this reason any planning, preparedness, and response activities undertaken by EPA and CG personnel to mitigate accidental or intentional discharges of oil or releases of hazardous substances, pollutants, and/or contaminants within the purview of the NCP should be interpreted as functionally equivalent to the requirements found within NEPA.


2020 ◽  
Vol 38 (8) ◽  
pp. 825-830
Author(s):  
Ying Guo ◽  
Steven J Laux ◽  
Melissa Burdier ◽  
Peng Gao ◽  
Lena Q Ma ◽  
...  

This work examines polycyclic aromatic hydrocarbon (PAH) concentrations in yard trash at various stages of the yard trash management cycle of collection, stockpiling, grinding and screening into mulch, and composting. Total extractable PAH concentrations were measured in yard trash at various management stages from 10 locations in Florida. The concentrations of 16 PAH compounds in processed yard trash ranged from 0.38 to 14 mg kg-1. PAH concentrations were detected in vegetative material harvested from a residential neighborhood, but were below the United States Environmental Protection Agency residential regional screening levels (RSLs). PAH concentrations near or above the RSLs were common in both unprocessed and processed yard trash collected at waste management facilities. PAH concentrations were amongst the highest in newly ground yard trash samples and were amongst the lowest in composted yard trash samples. These findings are important because land application of some waste materials, such as construction and demolition debris fines and street sweepings, are sometimes limited due to PAH. If processed yard trash, which is commonly land applied in residential settings, possesses similar PAH concentrations, evaluation of current risk assessment practices for land-applied wastes may require further examination.


Genetika ◽  
2016 ◽  
Vol 48 (3) ◽  
pp. 837-858 ◽  
Author(s):  
Gashtasb Mardani ◽  
Amir Mahvi ◽  
Morteza Hashemzadeh-Chaleshtori ◽  
Simin Nasseri ◽  
Mohammad Dehghani ◽  
...  

Bioremediation use to promote degradation and/or removal of contaminants into nonhazardous or less-hazardous substances from the environment using microbial metabolic ability. Pseudomonas spp. is one of saprotrophic soil bacterium and can be used for biodegradation of polycyclic aromatic hydrocarbons (PAHs) but this activity in most species is weak. Phenanthrene and pyrene could associate with a risk of human cancer development in exposed individuals. The aim of the present study was application of genetically engineered P. putida that produce dioxygenase for degradation of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC) method. The nahH gene that encoded catechol 2,3-dioxygenase (C23O) was cloned into pUC18 and pUC18-nahH recombinant vector was generated and transformed into wild P. putida, successfully. The genetically modified and wild types of P. putida were inoculated in soil and pilot plan was prepared. Finally, degradation of phenanthrene and pyrene by this bacterium in spiked soil were evaluated using HPLC measurement technique. The results were showed elimination of these PAH compounds in spiked soil by engineered P. putida comparing to dishes containing natural soil with normal microbial flora and inoculated autoclaved soil by wild type of P. putida were statistically significant (p<0.05). Although adding N and P chemical nutrients on degradation ability of phenanthrene and pyrene by engineered P. putida in soil were not statistically significant (p>0.05) but it was few impact on this process (more than 2%). Additional and verification tests including catalase, oxidase and PCR on isolated bacteria from spiked soil were indicated that engineered P. putida was alive and functional as well as it can affect on phenanthrene and pyrene degradation via nahH gene producing. These findings indicated that genetically engineered P. putida generated in this work via producing C23O enzyme can useful and practical for biodegradation of phenanthrene and pyrene as well as petroleum compounds in polluted environments.


2014 ◽  
Vol 4 ◽  
Author(s):  
Nirita Giri ◽  
Monika Sieghardt ◽  
Zhu Fan ◽  
Thomas Korimort ◽  
Axel Mentler

The ongoing urbanization has led to worldwide increase of diesel consumption resulting in several environmental problems like air, water and soil pollution. Diesel comprises polycyclic aromatic hydrocarbons (PAHs), which, via various vectors like insufficient combustion, accidents, etc., are subsequently deposited in the soil because of their hydrophobicity and low water solubility. Uncontaminated agricultural or urban soils are of great importance as they have a direct impact on food security and human health. Sixteen of the PAHs have been listed by the United States Environmental Protection Agency as ‘priority pollutants’ because of their mutagenic and carcinogenic properties. The removal of PAHs from the environment through phytoremediation is a growing concern and scientific interest. The main objective of this study was to investigate the phytoremediation capacity of the evergreen tree species Cinnamomum camphora for the dissipation and degradation of several PAHs of different chemical structure. A pot experiment was established with artificially diesel contaminated soil from Changsa, China. The experimental design included three different diesel contents with and without tree-plantation. An extraction method and an HPLC separation method with different detectors was developed and applied for the analysis of soil samples. The analytical results revealed that Cinnamomum camphora enhances removal of selected PAHs from the contaminated soil with reduction of 91.1% to 98.8% as well as dissipation of persistent PAHs with 4 total and aromatic rings. However a confirmative study is suggested to understand whether the dissipation effect is due to rhizosphere bacteria or combined effect of several factors.


Sign in / Sign up

Export Citation Format

Share Document