scholarly journals Quantitative analysis of non-equilibrium systems from short-time experimental data

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sreekanth K. Manikandan ◽  
Subhrokoli Ghosh ◽  
Avijit Kundu ◽  
Biswajit Das ◽  
Vipin Agrawal ◽  
...  

AbstractEstimating entropy production directly from experimental trajectories is of great current interest but often requires a large amount of data or knowledge of the underlying dynamics. In this paper, we propose a minimal strategy using the short-time Thermodynamic Uncertainty Relation (TUR) by means of which we can simultaneously and quantitatively infer the thermodynamic force field acting on the system and the (potentially exact) rate of entropy production from experimental short-time trajectory data. We benchmark this scheme first for an experimental study of a colloidal particle system where exact analytical results are known, prior to studying the case of a colloidal particle in a hydrodynamical flow field, where neither analytical nor numerical results are available. In the latter case, we build an effective model of the system based on our results. In both cases, we also demonstrate that our results match with those obtained from another recently introduced scheme.

2021 ◽  
Author(s):  
Sreekanth K Manikandan ◽  
Subhrokoli Ghosh ◽  
Avijit Kundu ◽  
Biswajit Das ◽  
Vipin Agrawal ◽  
...  

Abstract We provide a minimal strategy for the quantitative analysis of a large class of non-equilibrium systems in a steady state using the short-time Thermodynamic Uncertainty Relation (TUR). From short-time trajectory data obtained from experiments, we demonstrate how we can simultaneously infer quantitatively, both the thermodynamic force field acting on the system, as well as the exact rate of entropy production. We benchmark this scheme first for an experimental study of a colloidal particle system where exact analytical results are known, before applying it to the case of a colloidal particle in a hydrodynamical flow field, where neither analytical nor numerical results are available. Our scheme hence provides a means, potentially exact for a large class of systems, to get a quantitative estimate of the entropy produced in maintaining a non-equilibrium system in a steady state, directly from experimental data.


Author(s):  
Ivelin Kostov

In the work brought some experimental data of kinematic parameters of movement of cars forced idle, as the software product was used to diagnose 900 ATS, which recorded kinematic parameters of vehicle. On the basis of the conducted experimental research results are shown tabulated and analysed.


1935 ◽  
Vol 31 (8-9) ◽  
pp. 1112-1112

Analyzing clinical and experimental data on hypochloremia, the authors show that both during vomiting and when giving diuretica, it is not only about the loss of chlorine, but at the same time a large amount of water is lost.


Author(s):  
A. L. Lebedev ◽  
I. V. Avilina

Experimental study of kinetics of dissolution of hypso anhydrites at 25 ᵒC made it possible to formulate model of the process in the form of a balance equation for the kinetics of dissolution of gypsum, anhydrite (first and second orders, respectively) and kinetics of precipitation of gypsum (second order). The processing of the experimental data were carried out on the basis of the solution of the Riccati equation. When taking into account the common-ion effect on the solubility of gypsum and anhydrite, the calculated values turned out to be more comparable with the experimental ones.


Author(s):  
Sayed A. Nassar ◽  
Ramanathan M. Ranganathan ◽  
Saravanan Ganeshmurthy ◽  
Gary C. Barber

This experimental study investigates the effect of tightening speed and coating on both the torque – tension relationship and wear pattern in threaded fastener applications. The fastener torque – tension relationship is highly sensitive to normal variations in the coefficients of friction between threads and between the turning head and the surface of the joint. Hence, the initial level of the joint clamp load and the overall integrity and reliability of a bolted assembly is significantly influenced by the friction coefficients. The effect of repeated tightening and loosening is also investigated using M12, Class 8.8, fasteners with and without zinc coating. The torque – tension relationship is examined in terms of the non-dimensional nut factor K. The wear pattern is examined by monitoring the changes in surface roughness using a WYKO optical profiler and by using a LECO optical microscope. A Hitachi S-3200N Scanning Electron Microscope (SEM) is used to examine the contact surfaces, under the fastener head, after each tightening/loosening cycle. Experimental data on the effect of variables and the tightening speed, fastener coating and repeated tightening on the nut factor are presented and analyzed for M8 and M12, class 8.8, fasteners.


2016 ◽  
Vol 858 ◽  
pp. 300-304
Author(s):  
Zhen Fu Chen ◽  
Dan Wu ◽  
Qiu Wang Tao ◽  
Yuan Chu Gan

The high temperature stability of AC-16, AC-13, AC-20 under specimen thickness of 5cm and 6cm is studied through indoor asphalt mixture high rutting test, Through comparison and analysis about experimental data, it is found that the stability of AC-16, AC-13, AC-20 asphalt mixture at high- temperature decreases in turn. It is shown that thickness changes did not affect the change trend of the high temperature stability under gradation change, and the stability of AC-16 at high-temperature is the best, the AC-13 is second and the AC-20 is less.


Author(s):  
Andre Cardoso Barato ◽  
Taylor Wampler

Abstract The thermodynamic uncertainty relation is a prominent result in stochastic thermodynamics that provides a bound on the fluctuations of any thermodynamic flux, also known as current, in terms of the average rate of entropy production. Such fluctuations are quantified by the second moment of the probability distribution of the current. The role of higher order standardized moments such as skewness and kurtosis remains largely unexplored. We analyze the skewness and kurtosis associated with the first passage time of thermodynamic currents within the framework of stochastic thermodynamics. We develop a method to evaluate higher order standardized moments associated with the first passage time of any current. For systems with a unicyclic network of states, we conjecture upper and lower bounds on skewness and kurtosis associated with entropy production. These bounds depend on the number of states and the thermodynamic force that drives the system out of equilibrium. We show that these bounds for skewness and kurtosis do not hold for multicyclic networks. We discuss the application of our results to infer an underlying network of states.


Author(s):  
N Jones ◽  
S E Birch ◽  
R S Birch ◽  
L Zhu ◽  
M Brown

This report presents some experimental data that were recorded from 130 impact tests on mild steel pipes in two drop hammer rigs. The pipes were fully clamped across a span which was ten times the corresponding outside pipe diameters which lie between 22 and 324 mm. All of the pipes except five had wall thicknesses of 2 mm approximately and were impacted laterally by a rigid wedge indenter at the mid span, one-quarter span or near to a support. The impact velocities ranged up to 14 m/s and caused various failure modes. Some comparisons between two sets of experimental results indicate that the laws of geometrically similar scaling are almost satisfied over a scale range of approximately five.


2011 ◽  
Vol 255-260 ◽  
pp. 728-732
Author(s):  
Qing Chun ◽  
Jian Wu Pan

Based on the experiment of timber rectangle beams made of pine and fir reinforced with CFRP/AFRP hybrid FRP (HFRP) sheets. The failure modes and bending bearing capacity and load-deflection curves and strain distribution at mid-span section were analyzed. The results showed that: Comparing with the specimens without being reinforced by HFRP, there is certain improvement in bending bearing capacity and stiffness of the specimens reinforced with HFRP respectively. Bending bearing capacity of the pine specimens improve 18.1%~62.0% and bending bearing capacity of the fir specimens improve 7.7%~29.7%. Stiffness of the pine specimens improve 13%~21%, and stiffness of the fir specimens improve 6%~10%. Based on the experimental data, the computing formulas of bending bearing capacity of timber rectangle beams made of pine and fir reinforced with HFRP were presented.


2020 ◽  
pp. 92-104
Author(s):  
Gershon Kurizki ◽  
Goren Gordon

Henry scores a surprise win over Eve thanks to his quantum rocket that is powered by a quantum-chargeable battery. This gadget is subject to the time–energy uncertainty relation that may result in the battery having more energy than expected. This occurs if an energy measurement within a short time “collapses” the battery randomly to the highest energy state. Intriguingly, time is not a quantum observable. This raises the question that was hotly debated by Bohr and Einstein: how can time be uncertain and affect the energy uncertainty? The more general question is: what is the meaning of time, energy and their uncertainty in physics and in human experience? Attempts to define time have been the subject of philosophical controversy throughout millennia. The appendix to this chapter introduces the Schrödinger equation that governs the dynamics of quantum systems and their time–energy uncertainty.


Sign in / Sign up

Export Citation Format

Share Document