scholarly journals Gene expression profiles in HTLV-I-immortalized T cells: deregulated expression of genes involved in apoptosis regulation

Oncogene ◽  
1999 ◽  
Vol 18 (6) ◽  
pp. 1341-1349 ◽  
Author(s):  
Edward W Harhaj ◽  
LiFeng Good ◽  
Gutian Xiao ◽  
Shao-Cong Sun
2020 ◽  
Author(s):  
Alena Moudra ◽  
Veronika Niederlova ◽  
Jiri Novotny ◽  
Lucie Schmiedova ◽  
Jan Kubovciak ◽  
...  

AbstractAntigen-inexperienced memory-like T (AIMT) cells are functionally unique T cells representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multi-omics approaches including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice independently of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Co-housing with feral mice changed the bacterial colonization of laboratory strains, but had only minimal effects on the CD8+ T-cell compartment including AIMT cells.


2020 ◽  
Author(s):  
Rui Zhang ◽  
Chen Chen ◽  
Qi Li ◽  
Jialu Fu ◽  
Dong Zhang ◽  
...  

Abstract Background: Immune-related genes (IRGs) play a crucial role in the initiation and progression of cholangiocarcinoma (CCA). However, immune signatures have rarely been used to predict prognosis of CCA. The aim of this study was to construct a novel model for CCA to predict survival based on IRGs expression data.Methods: The gene expression profiles and clinical data of CCA patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were integrated to establish and validate prognostic IRG signatures. Differentially expressed immune-related genes were screened. Univariate and multivariate Cox analysis were performed to identify prognostic IRGs, and the risk model that predicts outcomes was constructed. Furthermore, receiver operating characteristic (ROC) and Kaplan-Meier curve were plotted to examine predictive accuracy of the model, and a nomogram was constructed based on IRGs signature, combining with other clinical characteristics. Finally, CIBERSORT was used to analyze the association of immune cells infiltration with risk score.Results: We identified that 223 IRGs were significantly dysregulated in patients with CCA, among which five IRGs (AVPR1B, CST4, TDGF1, RAET1E and IL9R) were identified as robust indicators for overall survival (OS), and a prognostic model was built based on the IRGs signature. Meanwhile, patients with high risk had worse OS in training and validation cohort, and the area under the ROC was 0.898 and 0.846, respectively. Nomogram demonstrated that immune risk score contributed much more points than other clinicopathological variables, with a C-index of 0.819 (95% CI, 0.727-0.911). Finally, we found that IRGs signature was positively correlated with the proportion of CD8+ T cells, neurophils and T gamma delta, while negatively with that of CD4+ memory resting T cells.Conclusions: We established and validated an effective five IRGs-based prediction model for CCA, which could accurately classify patients into groups with low and high risk of poor prognosis.


2006 ◽  
Vol 177 (9) ◽  
pp. 6052-6061 ◽  
Author(s):  
Sung Nim Han ◽  
Oskar Adolfsson ◽  
Cheol-Koo Lee ◽  
Tomas A. Prolla ◽  
Jose Ordovas ◽  
...  

2016 ◽  
Vol 77 (9) ◽  
pp. 961-968 ◽  
Author(s):  
Shohei Ogawa ◽  
Mie Okutani ◽  
Takamitsu Tsukahara ◽  
Nobuo Nakanishi ◽  
Yoshihiro Kato ◽  
...  

2001 ◽  
Vol 5 (4) ◽  
pp. 161-170 ◽  
Author(s):  
DAVID GERHOLD ◽  
MEIQING LU ◽  
JIAN XU ◽  
CHRISTOPHER AUSTIN ◽  
C. THOMAS CASKEY ◽  
...  

Oligonucleotide DNA microarrays were investigated for utility in measuring global expression profiles of drug metabolism genes. This study was performed to investigate the feasibility of using microarray technology to minimize the long, expensive process of testing drug candidates for safety in animals. In an evaluation of hybridization specificity, microarray technology from Affymetrix distinguished genes up to a threshold of ∼90% DNA identity. Oligonucleotides representing human cytochrome P-450 gene CYP3A5 showed heterologous hybridization to CYP3A4 and CYP3A7 RNAs. These genes could be clearly distinguished by selecting a subset of oligonucleotides that hybridized selectively to CYP3A5. Further validation of the technology was performed by measuring gene expression profiles in livers of rats treated with vehicle, 3-methylcholanthrene (3MC), phenobarbital, dexamethasone, or clofibrate and by confirming data for six genes using quantitative RT-PCR. Responses of drug metabolism genes, including CYPs, epoxide hydrolases ( EHs), UDP-glucuronosyl transferases ( UGTs), glutathione sulfotransferases ( GSTs), sulfotransferases ( STs), drug transporter genes, and peroxisomal genes, to these well-studied compounds agreed well with, and extended, published observations. Additional gene regulatory responses were noted that characterize metabolic effects or stress responses to these compounds. Thus microarray technology can provide a facile overview of gene expression responses relevant to drug metabolism and toxicology.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 976-976 ◽  
Author(s):  
John C. Riches ◽  
Ajanthah Sangaralingam ◽  
Shahryar Kiaii ◽  
Tracy Chaplin ◽  
Demet Cekdemir ◽  
...  

Abstract Abstract 976 Lenalidomide has recently been demonstrated to have significant activity in chronic lymphocytic leukemia (CLL). Its mechanism of action in this disease is not well understood, but it is thought to act primarily by enhancing anti-tumor immunity and reducing production of pro-tumoral factors in the CLL microenvironment. We have previously demonstrated alterations in the expression of cytoskeletal genes in T-cells from patients with CLL and have subsequently shown that these changes translate into a deficit in T-cell function, due to impaired actin polymerization resulting in defective immunological synapse formation. Treatment of both autologous T-cells and CLL cells with lenalidomide was necessary to repair this defect, suggesting that this may be a key component of this agent's activity in CLL. Therefore we examined the effect of lenalidomide on the global gene expression profiles of isolated B-cells and T-cell subsets from CLL patients and healthy donors. Peripheral blood mononuclear cells from patients with untreated CLL or healthy donors were cultured in the presence of 1 μM lenalidomide or vehicle control for 48 hours. The lymphocyte subsets were isolated, followed by RNA extraction and gene expression profiling using the Affymetrix HGU133Plus2.0 platform. Lenalidomide treatment had similar effects on gene expression in T-cells from both patients with CLL and healthy donors. The most prominent changes in expression were of genes involved in cytoskeletal signaling including a 20-fold increase in WASF1 (Wiskott Aldrich Syndrome protein family, member 1), and greater than 2-fold increases in the expression of Rac-family member RHOC, (Ras homolog gene family, member C), actin binding proteins CORO1B (Coronin 1B), PARVA (Parvin alpha), and the Rho guanine nucleotide exchange factors (GEFs), ARHGEF5 and ARHGEF7. We also observed changes in genes regulating integrin signaling including PXN (Paxilin) and FAK (Focal adhesion kinase), and a shift towards Th1 differentiation with upregulation of TNF, IL-12R, and IL-18R. In addition, we noted increased expression of the transcription factors IKZF1, IKZF4 and IRF4, genes involved in the Ikaros pathways that are essential for hematopoiesis and control of lymphoid proliferation. These changes in gene expression provide further evidence that an important mechanism of action of lenalidomide is the upregulation of the actin cytoskeletal network including Rho-GTPases and integrin activation signaling, and are consistent with our previous observations concerning the functional repair of T-cells in CLL. Initial analysis of the effect of lenalidomide on the gene expression profiles of the CLL B-cells showed similar changes to those previously described in vivo from CLL patients receiving single agent lenalidomide in a clinical trial (Chen et al. JCO 2010). In our system, lenalidomide treatment resulted in a greater than 2-fold upregulation of 189 genes, and a greater than 2-fold downregulation of 85 genes in CLL B-cells. We observed increased expression of several genes belonging to the TNF superfamily including TNF-α, OX40L, and APRIL, and the receptors DR5, DCR2, and OX40. Many of these are known to mediate apoptosis signaling, and we also observed increased expression of pro-apoptotic genes such as FAS, BID (BH3 interacting domain death agonist), HRK (Harakiri), and CFLAR (CASP8 and FADD-like apoptosis regulator), and cell cycle regulators CDKN1A and CDKN1C (Cyclin-dependent kinase inhibitors 1A and 1C). Lenalidomide also upregulated expression of several genes of known importance in the CLL microenvironment, including the chemokines CCL3 and CCL4, CD40, CD274 (PD-L1), CD279 (PD-1), and adhesion molecules LFA3 and ICAM1. The effect of lenalidomide on the gene expression profiles of normal B-cells was less marked, with greater than 2-fold upregulation of 51 genes and downregulation of 12 genes. However, we did observe that lenalidomide treatment induced upregulation of genes involved in cytoskeletal pathways such as RND1 (Rho family GTPase 1), RHOQ (Ras homolog gene family, member Q), and MYO1B (myosin 1B). In conclusion, investigation of the effect of lenalidomide on gene expression profiling in CLL suggests that the drug acts both to enhance T-cell function, and to render the CLL cells more susceptible to immune cell mediated killing. Disclosures: Gribben: Roche: Honoraria; Celgene: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria; Pharmacyclics: Honoraria.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15258-e15258
Author(s):  
Jayesh Desai ◽  
Jie Wang ◽  
Qing Zhou ◽  
Jun Zhao ◽  
Sanjeev Deva ◽  
...  

e15258 Background: Tislelizumab, an anti-PD-1 monoclonal antibody, showed clinical benefit for patients (pts) with NSCLC alone (NCT02407990, CTR20160872) and in combination with chemotherapy (NCT03432598). Gene expression profiles (GEP) associated with response and resistance to tislelizumab in these studies were assessed. Methods: The GEP of baseline tumor samples from 59 nonsquamous (NSQ) and 42 squamous (SQ) NSCLC pts treated with tislelizumab monotherapy (mono) as ≥1L treatment, and 16 NSQ and 21 SQ pts treated with tislelizumab plus chemotherapy (combo) as 1L treatment were assessed using the 1392-gene HTG GEP EdgeSeq panel. NSQ and SQ cohorts were analyzed separately due to distinct GEP features shown by PCA and t-SNE clustering. Results: Tislelizumab mono and combo showed antitumor activity in NSCLC (Table). In 80 biomarker-evaluable samples, inflamed tumor signatures (inflammatory GEP; antigen presentation GEP) were associated with longer overall survival (log-rank test, NSQ mono: P=0.04, 0.003; NSQ combo: P=0.05, 0.02; SQ combo: P=0.06, 0.06). Monotherapy non-responders (NRs) were clustered into 2 subgroups (NR1, NR2) with distinct GEPs. Compared with responders, NR1 had proliferation signatures (elevated cell cycle [CC] and DNA repair) in both NSQ ( P=0.2, 0.02) and SQ ( P=0.03, 0.4) cohorts, trending toward low inflamed tumor signatures. In NR pts receiving combo, CC and DNA repair signatures were not enriched, and high CC and DNA repair scores were observed in some SQ combo responders versus NRs ( P=0.2, 0.02). NR2 had higher M2 macrophage and Treg cell signatures versus responders in both NSQ and SQ mono, despite high inflamed tumor and low proliferation signatures. NR2 also had increased expression of genes related to immune regulation and angiogenesis, including PIK3CD, CCR2, CD244, IRAK3, and MAP4K1 ( P<0.05) in NSQ, and PIK3CD, CCR2, CD40, CD163, MMP12, VEGFC, and TEK ( P<0.05) in SQ. Conclusions: Clinical benefit in pts with NSCLC receiving tislelizumab (mono or combo) was associated with high inflamed tumor signatures, while elevated immune suppressive cell signatures may indicate resistance. High proliferation signatures were associated with resistance to monotherapy, but not to combination therapy. Both immune- and tumor-intrinsic factors may be considered for validation in future clinical trials. [Table: see text]


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Lingling An ◽  
R. W. Doerge

It is well accepted that genes are simultaneously involved in multiple biological processes and that genes are coordinated over the duration of such events. Unfortunately, clustering methodologies that group genes for the purpose of novel gene discovery fail to acknowledge the dynamic nature of biological processes and provide static clusters, even when the expression of genes is assessed across time or developmental stages. By taking advantage of techniques and theories from time frequency analysis, periodic gene expression profiles are dynamically clustered based on the assumption that different spectral frequencies characterize different biological processes. A two-step cluster validation approach is proposed to statistically estimate both the optimal number of clusters and to distinguish significant clusters from noise. The resulting clusters reveal coordinated coexpressed genes. This novel dynamic clustering approach has broad applicability to a vast range of sequential data scenarios where the order of the series is of interest.


Sign in / Sign up

Export Citation Format

Share Document