scholarly journals ABCG2-overexpressing H460/MX20 cell xenografts in athymic nude mice maintained original biochemical and cytological characteristics

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Zhang ◽  
Zhen Chen ◽  
Likun Chen ◽  
Fang Wang ◽  
Furong Li ◽  
...  

Abstract H460/MX20 are derived from large cell lung cancer H460 cell line and then transformed into ABCG2-overexpressing cells by mitoxantrone’s induction, which are widely used in study of multidrug resistance (MDR) in vitro. To establish and spread the model of H460/MX20 cell xenografts, we investigated whether cell biological characteristics and the MDR phenotype were maintained in vivo model. Our results demonstrated that the cell proliferation, cell cycle, and ABCG2 expression level in xH460/MX20 cells isolated from H460/MX20 cell xenografts were similar to H460/MX20 cells in vitro. Importantly, xH460/MX20 cells exhibited high levels of resistance to ABCG2 substrates such as mitoxantrone and topotecan as H460/MX20 cells did. Furthermore, lapatinib, the inhibitor of ABCG2, potently reversed mitoxantrone- and topotecan-resistance of xH460/MX20 cells. Taken together, these results suggest that H460/MX20 cell xenografts in athymic nude mice still retain their original cytological characteristics and MDR phenotype. Thus, the H460/MX20 cell xenografts model could serve as a sound model in vivo for study on reversal MDR.

2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2849-2849
Author(s):  
Nicolas Graf ◽  
Zhoulei Li ◽  
Ken Herrmann ◽  
Alexandra Junger ◽  
Daniel Weh ◽  
...  

Abstract Abstract 2849 Purpose: The thymidine analogue [18F]fluorothymidine (FLT) has been shown to reflect proliferation of high-grade lymphoma cells both in preclinical and clinical studies. In this preclinical in vitro and in vivo study we assessed early FLT-uptake as an adequate and robust surrogate marker for response to inhibitors of Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-dependent pathways in an anaplastic large cell lymphoma (ALCL) xenotransplant model. Methods: In vitro investigations included viability assessment (MTT assay), cell cycle analysis using propidium iodide staining and western blotting to characterize response of the ALCL cell lines SUDHL-1 and Karpas299 to treatment with heat shock protein 90 (Hsp90) inhibitor NVP-AUY922, the Phosphoinositide 3-kinase (PI3K) inhibitor BGT226 or the mammalian target of rapamycin (mTOR) inhibitor RAD001. Thymidine metabolism in severe combined immunodeficient (SCID) mice bearing SUDHL-1 or Karpas 299 lymphoma xenotransplants was assessed non-invasively prior to and early in the course of therapy (48h to 7 days) by FLT and FDG positron emission tomography (FLT-PET and FDG-PET) using a dedicated small animal PET system. Tumor-to-background ratios (TBR) of FLT-PET were compared to that of PET using the standard radiotracer [18F]fluorodeoxyglucose (FDG). Reference for tumor response was local control of the tumor measured by shifting calliper and histopathological analysis of explanted lymphomas. Results: In vitro, SUDHL-1 cells were sensitive to all three inhibitors (IC50 AUY922= 50 nM; IC50 BGT266= 10 nM; IC50 RAD001= 1 nM). These cells showed a dose-dependent induction of cell-cycle arrest in G1-phase and reduction of S-Phase after 24 to 48 hours and - to a lesser extent - increase of apoptosis. Incubation of SUDHL-1 cells with NVP-AUY922 (50 nM) for 24 hours led to a 70% reduction of ALK level and a abrogation of Akt phosphorylation as determined by western blot analysis. Likewise, no phosphorylation of Akt was detectable after incubation with BGT266 (10 nM) already after 4 hours. RAD001 (0.1-1nM, 24h) completely inhibited phosphorylation of p70 S6K. In contrast, Karpas299 cells were only sensitive to RAD001-induced cell cycle arrest, but insensitive to NVP-AUY922 and BGT266. In vivo, we performed FLT- and FDG-PET scans to monitor inhibition of tumor growth in the course of therapy with NVP-AUY922. Tumor volume in treated animals bearing SUDHL-1 lymphomas showed modest increase within the first week (median increase= + 25%, range -30% to + 80%, n=8) as opposed to a 3.8-fold increase in untreated control animals. After 14 days a clear reduction of tumor mass could be observed (median= - 25%, range -40% to + 30%, n=4). Median TBR of FLT-PET decreased significantly to 40% compared to baseline as earlier as 5 days after initiation of therapy (range 32–67%, n=8, p=0,008). In contrast, the pattern of TBR in FDG-PET did not show any clear tendency (median TBR 79%, range 36%-161%, n=8, p=0,73). We then investigated the ability of FLT-PET to differentiate between sensitive and resistant lymphoma cells. Therefore, mice bearing Karpas299 lymphomas were treated with NVP-AUY922 (resistant in vitro) or RAD001 (sensitive in vitro). According to our in vitro results, no effect was seen during treatment with NVP-AUY299 as indicated by about 3-fold tumor growth on day 7 and increase of median TBR in FLT-PET to 162% (range 106–177%, p=0,008, n=8) on day 2. In contrast, mice receiving RAD001 showed a deceleration of tumor development with doubling of tumor volume within the first week (range -20% to + 320%, n=10) that remained fairly constant over the following weeks. FLT-PET imaging indicated a slight increase of TBR correctly reflecting tumor growth kinetics (median=126%, range 60–129%, no p-value). A larger cohort is currently investigated as well as histopathological analysis of explanted lymphomas. The updated data will be presented at the meeting. Conclusion: In contrast to FDG-PET, FLT-PET is able to predict response to specific inhibitors early in the course of the therapy using a anaplastic large cell lymphoma xenograft model and is able to distinguish between sensitive and resistant lymphoma cells. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 80 (4) ◽  
pp. 275-280 ◽  
Author(s):  
John M Stewart ◽  
Lajos Gera ◽  
Daniel C Chan ◽  
Paul A Bunn Jr. ◽  
Eunice J York ◽  
...  

Bradykinin (BK) (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) is an important growth factor for small-cell lung cancer (SCLC) and prostate cancer (PC). These cancers have cells of neuroendocrine origin and express receptors for a variety of neuropeptides. BK receptors are expressed on almost all lung cancer cell lines and on many PC cells. Our very potent BK antagonist B9430 (D-Arg-Arg-Pro-Hyp-Gly-Igl-Ser-D-Igl-Oic-Arg) (Hyp, trans-4-hydroxy-L-proline; Igl, α-2-indanylglycine; Oic, octahydroindole-2-carboxylic acid) is a candidate anti-inflammatory drug but does not inhibit growth of SCLC or PC. When B9430 is dimerized by N-terminal cross-linking with a suberimide linker, the product B9870 is a potent growth inhibitor for SCLC both in vitro and in vivo in athymic nude mice. Daily i.p. injection at 5 mg·kg–1·day–1 beginning on day 8 after SCLC SHP-77 cell implantation gave 65% inhibition of tumor growth. B9870 stimulates apoptosis in SCLC by a novel "biased agonist" action. We have also developed new small mimetic antagonists. BKM-570 (F5C-OC2Y-Atmp) (F5C, pentafluorocinnamic acid; OC2Y, O-2,6-dichlorobenzyl tyrosine; Atmp, 4-amino-2,2,6,6-tetramethylpiperidine) is very potent for inhibition of SHP-77 growth in nude mice. When injected daily i.p. at 5 mg·kg–1, M-570 gave 90% suppression of tumor growth. M-570 is more potent than the well-known anticancer drug cisPlatin (60% inhibition) or the recently developed SU5416 (40% inhibition) in this model. M-570 also showed activity against various other cancer cell lines in vitro (SCLC, non-SCLC, lung, prostate, colon, cervix) and inhibited growth of prostate cell line PC3 in nude mice. M-570 and related compounds evidently act in vivo through pathways other than BK receptors. These compounds have clinical potential for treatment of human lung and prostate cancers.Key words: bradykinin antagonists, cancer, inflammation, prostate cancer, small cell lung cancer.


2017 ◽  
Vol 8 (10) ◽  
pp. 3723-3736 ◽  
Author(s):  
Zhiguang Duan ◽  
Jianjun Deng ◽  
Yangfang Dong ◽  
Chenhui Zhu ◽  
Weina Li ◽  
...  

Ginsenoside-Rk3 inhibited proliferation, arrested the cell cycle, induced apoptosisviadeath receptor-mediated mitochondria-dependent pathways and suppressed angiogenesis and tumor growth.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Jae Chan Park ◽  
Young Joon Lee ◽  
Hae Yun Choi ◽  
Yong Kook Shin ◽  
Jong Dae Kim ◽  
...  

Platycodin D is a major pharmacological constituent of Platycodi radix and has showed various pharmacological activities through oxidative stress defense mechanisms. Here, possible antitumor, anticachexia, and immunomodulatory activities of platycodin D were observed on the H520 tumor cell-bearing athymic nude mice after confirming thein vitrocytotoxicity. Platycodin D was orally administered at dose levels of 200, 100, and 50 mg/kg, once a day for 35 days from 15 days after implantation. The results were compared with gemcitabine 160 mg/kg intraperitoneally treated mice (7-day intervals). Platycodin D showed favorable cytotoxic effects on the H520 cells, and also dose-dependently decreased the tumor volumes and weights with increases of apoptotic cells (caspase-3 and PARP immunopositive cells), iNOS and TNF-αimmunoreactivities, decreases of COX-2 immunoreactivities in tumor masses. Platycodin D also showed dose-dependent immunostimulatory and anticachexia effects. Gemcitabine showed favorable cytotoxity against H520 tumor cell and relatedin vivoantitumor effects but aggravated the cancer related cachexia and immunosuppress in H520 tumor cell-bearing athymic nude mice. Taken together, it is considered that oral treatment of platycodin D has potent antitumor activities on H520 cells through direct cytotoxic effects, increases of apoptosis in tumor cells, and immunostimulatory effects and can be control cancer related cachexia.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sheng-Kai Huang ◽  
Ruo-Xuan Ni ◽  
Wen-Jie Wang ◽  
Di Wang ◽  
Mei Zhao ◽  
...  

ObjectiveTo study the expression of LINC00673 in cervical cancer and cervical intraepithelial neoplasia (CIN) and to explore the role of LINC00673 in the development of cervical cancer.MethodsThe expression of LINC00673 in serum from cervical cancer patients, CIN patients, and healthy participants was detected by RT-qPCR. The function of LINC00673 in cervical cancer cells was analyzed using in vitro and in vivo experiments.ResultsOur results revealed that serum LINC00673 levels were highest in cervical cancer patients, followed by patients with CIN and healthy controls. In vitro experiments demonstrated that overexpression of LINC00673 enhanced the proliferation and cell cycle progression of HeLa and SiHa cells. In vivo experiments showed that the tumor weight and volume of nude mice subcutaneously injected with LINC00673-overexpressing HeLa cells were larger than those of nude mice injected with control cells (P < 0.05). Western blotting showed that cell cycle-related proteins cyclin A2 and cyclin E and interstitial-associated proteins Snail and N-cadherin were upregulated and p53 signaling pathway-related proteins were downregulated in LINC00673-overexpressing HeLa and SiHa cells.ConclusionLINC00673 plays an important role in the development of cervical cancer and may serve as a new therapeutic target for cervical cancer.


2017 ◽  
Vol 44 (4) ◽  
pp. 1545-1558 ◽  
Author(s):  
Ke Wei ◽  
Chunfeng Pan ◽  
Guoliang Yao ◽  
Bin Liu ◽  
Teng Ma ◽  
...  

Background/Aims: MicroRNAs have been validated to play a crucial role in tumorigenesis of non-small cell lung cancer (NSCLC). Although miR-106b-5p has been reported to play a vital role in various malignancies the physiological function of miR-106b-5p in NSCLC still remain unknown. In this study, we investigated the role of miR-106b-5p in NSCLC. Methods: Quantitative real-time polymerase chain reaction was conducted to estimate the expression of miR-106b-5p and BTG3 in both NSCLC tissues and cell lines. The effects of miR-106b-5p on proliferation were determined in vitro using CCK-8 proliferation assays, 5-ethynyl-2’-deoxyuridine (EdU) incorporation, colony formation assays and cell-cycle assays and the in vivo effects were evaluated by a mouse tumorigenicity model. Cell apoptosis and cell cycle was investigated by flow cytometric analysis in vitro. The molecular mechanism underlying the relevance between miR-106b-5p and BTG3 was confirmed by luciferase assay and western blot. Results: In current study, we found a relatively higher miR-106b-5p and lower BTG3 expression in NSCLC specimens and cell lines. BTG3 was verified as a direct target of miR-106b-5p by luciferase assay. In vitro, over-expression of miR-106b-5p promoted proliferation and inhibited apoptosis by down-regulating BTG3 expression. In vivo, miR-106b-5p promoted xenograft tumor formation. Conclusion: Our findings revealed for the first time that miR-106b-5p plays a tumorigenesis role in NSCLC progression by down-regulating BTG3 expression, which may lead to a novel insight to the potential biomarker and novel therapeutic strategies for NSCLC patients.


Sign in / Sign up

Export Citation Format

Share Document