scholarly journals Multi-end functionalised polymer additives synthesised by living anionic polymerisation—the impact of additive molecular structure upon surface properties

2011 ◽  
Vol 2 (4) ◽  
pp. 851 ◽  
Author(s):  
Lian R. Hutchings ◽  
Norazilawati Muhamad Sarih ◽  
Richard L. Thompson
Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Javed Alam ◽  
Arun Kumar Shukla ◽  
Mohammad Azam Ansari ◽  
Fekri Abdulraqeb Ahmed Ali ◽  
Mansour Alhoshan

We fabricated a nanofiltration membrane consisting of a polyaniline (PANI) film on a polyphenylsulfone (PPSU) substrate membrane. The PANI film acted as a potent separation enhancer and antimicrobial coating. The membrane was analyzed via scanning electron microscopy and atomic force microscopy to examine its morphology, topography, contact angle, and zeta potential. We aimed to investigate the impact of the PANI film on the surface properties of the membrane. Membrane performance was then evaluated in terms of water permeation and rejection of methylene blue (MB), an organic dye. Coating the PPSU membrane with a PANI film imparted significant advantages, including finely tuned nanometer-scale membrane pores and tailored surface properties, including increased hydrophilicity and zeta potential. The PANI film also significantly enhanced separation of the MB dye. The PANI-coated membrane rejected over 90% of MB with little compromise in membrane permeability. The PANI film also enhanced the antimicrobial activity of the membrane. The bacteriostasis (BR) values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Escherichia coli were 63.5% and 95.2%, respectively. The BR values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Staphylococcus aureus were 70.6% and 88.0%, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilfredo Angulo ◽  
José M. Ramírez ◽  
Dany De Cecchis ◽  
Juan Primera ◽  
Henry Pacheco ◽  
...  

AbstractCOVID-19 is a highly infectious disease that emerged in China at the end of 2019. The COVID-19 pandemic is the first known pandemic caused by a coronavirus, namely, the new and emerging SARS-CoV-2 coronavirus. In the present work, we present simulations of the initial outbreak of this new coronavirus using a modified transmission rate SEIR model that takes into account the impact of government actions and the perception of risk by individuals in reaction to the proportion of fatal cases. The parameters related to these effects were fitted to the number of infected cases in the 33 provinces of China. The data for Hubei Province, the probable site of origin of the current pandemic, were considered as a particular case for the simulation and showed that the theoretical model reproduces the behavior of the data, thus indicating the importance of combining government actions and individual risk perceptions when the proportion of fatal cases is greater than $$4\%$$ 4 % . The results show that the adjusted model reproduces the behavior of the data quite well for some provinces, suggesting that the spread of the disease differs when different actions are evaluated. The proposed model could help to predict outbreaks of viruses with a biological and molecular structure similar to that of SARS-CoV-2.


2016 ◽  
Author(s):  
L. Li ◽  
P. Tang ◽  
S. Nakao ◽  
D. R. Cocker III

Abstract. The molecular structure of volatile organic compounds (VOC) determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of twelve different eight to nine carbon aromatic hydrocarbons under low NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution theory developed by Li et al. (2015a) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl substituted aromatic hydrocarbon.


2020 ◽  
Vol 7 (23) ◽  
pp. 3853-3861
Author(s):  
Yingnan Zhao ◽  
Jie Ding ◽  
Xiao Han ◽  
Ting Geng ◽  
Xiuwen Zhou ◽  
...  

The optical performance of 1–3 was influenced by the subtle change of the molecular structure as expected.


Amylase ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Wei Ping Quek ◽  
Wenwen Yu ◽  
Glen P. Fox ◽  
Robert G. Gilbert

Abstract In brewing, amylases are key enzymes in hydrolyzing barley starch to sugars, which are utilized in fermentation to produce ethanol. Starch fermentation depends on sugars produced by amylases and starch molecular structure, both of which vary with barley grain size. Grain size is a major industrial specification for selecting barley for brewing. An in-depth study is given of how enzyme activity and starch structure vary with grain size, the impact of these factors on fermentable sugar production, and the underlying mechanisms. Micro-malting and mashing experiments were based on commercial methodologies. Starch molecular structural parameters were obtained using size-exclusion chromatography, and fitted using biosynthesis-based models. Correlation analysis using the resulting parameters showed larger grain sizes contained fewer long amylopectin chains, higher amylase activities and soluble protein level. Medium grain sizes released most sugars during mashing, because of higher starch utilization from the action of amylases, and shorter amylose chains. As starch is the substrate for amylase-driven fermentable sugars production, measuring its structure should be a prime indication for mashing performance, and should be used as an industry specification when selecting barley grains for brewing.


2015 ◽  
Vol 132 ◽  
pp. 45-53 ◽  
Author(s):  
M. Jarpa-Parra ◽  
F. Bamdad ◽  
Z. Tian ◽  
Hongbo Zeng ◽  
Feral Temelli ◽  
...  

2013 ◽  
Vol 850-851 ◽  
pp. 70-73
Author(s):  
Hua Wang ◽  
Hao Dong Song ◽  
En Guang Zou ◽  
Teng Jie Ge ◽  
Hong Fang

The performance of JHMGC100S, a kind of HDPE for pipe, was studied, and the comparison with other typical PE100 resin in China and abroad was also did. The results show that: the impact strength of JHMGC100S was higher than other samples, and the bending strength was almost the same; the molecular weight distribution was obvious bimodal; the processability of JHMGC100S was good, and the hydrostatic strength of the pipe which was produced by JHMGC100S fulfilled the rule in GB/T 15558.1-2003.


Sign in / Sign up

Export Citation Format

Share Document