A direct reaction approach for the synthesis of zeolitic imidazolate frameworks: template and temperature mediated control on network topology and crystal size

2012 ◽  
Vol 48 (79) ◽  
pp. 9930 ◽  
Author(s):  
Mónica Lanchas ◽  
Daniel Vallejo-Sánchez ◽  
Garikoitz Beobide ◽  
Oscar Castillo ◽  
Andrés T. Aguayo ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1061
Author(s):  
Maria N. Timofeeva ◽  
Ivan A. Lukoyanov ◽  
Valentina N. Panchenko ◽  
Biswa Nath Bhadra ◽  
Evgenii Yu Gerasimov ◽  
...  

Zeolitic imidazolate frameworks MAF-5 and MAF-6 based on Zn2+ and 2-ethylimidazole were demonstrated to be efficient heterogeneous catalysts in solvent-free coupling of CO2 and propylene oxide (PO) to produce propylene carbonate (PC) at 0.8 MPa of CO2 and 80 °C. Activity of MAF-5 was lower in comparison with MAF-6 due to the difference in their structural and textural characteristics. MAF-6 samples with particle size of 190 ± 20, 360 ± 30, and 810 ± 30 nm were prepared at room temperature from [Zn(NH3)4](OH)2 and 2-ethylimidazole. Control of particle size was achieved by variation of type of alcohol in alcohol/cyclohexane media for the preparation of MAF-6. According to this comprehensive study, the yield of PC was found to decrease with increasing crystal size of the MAF-6 material, which was related to the change in textural properties and the number and localization of active sites. The combination of MAF-6 with particle size of with particle size of 190 ± 20 nm and tetrabutylammonium bromide ([n-Bu4N]Br) as co-catalyst led to an approximately 4-fold enhancement in the yield of PC (80.5%). Compared with reported ZIFs catalysts, the efficiencies of MAF-5/[n-Bu4N]Br and MAF-6/[n-Bu4N]Br binary systems were comparable and higher under similar reaction conditions.


Author(s):  
Harry A. Atwater ◽  
C.M. Yang ◽  
K.V. Shcheglov

Studies of the initial stages of nucleation of silicon and germanium have yielded insights that point the way to achievement of engineering control over crystal size evolution at the nanometer scale. In addition to their importance in understanding fundamental issues in nucleation, these studies are relevant to efforts to (i) control the size distributions of silicon and germanium “quantum dots𠇍, which will in turn enable control of the optical properties of these materials, (ii) and control the kinetics of crystallization of amorphous silicon and germanium films on amorphous insulating substrates so as to, e.g., produce crystalline grains of essentially arbitrary size.Ge quantum dot nanocrystals with average sizes between 2 nm and 9 nm were formed by room temperature ion implantation into SiO2, followed by precipitation during thermal anneals at temperatures between 30°C and 1200°C[1]. Surprisingly, it was found that Ge nanocrystal nucleation occurs at room temperature as shown in Fig. 1, and that subsequent microstructural evolution occurred via coarsening of the initial distribution.


Author(s):  
Frastica Deswardani ◽  
Helga Dwi Fahyuan ◽  
Rimawanto Gultom ◽  
Eif Sparzinanda

Telah dilakukan penelitian mengenai pengaruh konsentrasi doping karbon pada lapisan tipis TiO2 yang ditumbuhkan dengan metode spray terhadap struktur kristal dan morfologi TiO2. Hasil karakterisasi SEM menunjukkan bahwa penambahan doping karbon dapat meningkatkan ukuran butir. Lapisan TiO2 doping karbon 8% diperoleh ukuran butir terbesar adalah 1.35 μm, sedangkan ukuran tekecilnya adalah 0.45 μm. Sementara itu, untuk lapisan tipis TiO2 didoping karbon 15% memiliki ukuran butir terbesar yaitu 1.76 μm dan terkecil 0.9 μm. Hasil XRD menunjukkan seluruh puncak difraksi lapisan tipis TiO2 dengan doping karbon 8% dan 15% merupakan TiO2 anatase. Ukuran kristal lapisan TiO2 didoping karbon 8% diperoleh sebesar 638,08 Å dan untuk pendopingan 15% karbon ukuran kristal lapisan tipis TiO2 adalah 638,09 Å, hal ini menunjukkan ukuran kristal kedua sampel tidak mengalami perubahan yang signifikan.   TiO2 thin film with carbon doping has been successfully grown by spray method. The research on the effect of carbon doping on crystal structure and morfology of TiO2 has been prepared by varying carbon concentration (8% and 15% carbon). Analysis of SEM showed that the addition of carbon may increase the grain size. Thin film of TiO2 doped carbon 8% has the largest grain size 1.35 μm, while the smallest grain size is 0.45 μm. Meanwhile, for thin film TiO2 doped carbon 15% has the largest grain size 1.76 μm and smallest 0.9 μm. The XRD results showed the entire diffraction peak of thin film TiO2 doped carbon 8% and 15% were TiO2 anatase. The crystal size of thin film TiO2 doped carbon 8% was obtained at 638.08 Å and for thin film TiO2 doped carbon 15% the crystalline size of TiO2 thin film was 638.09 Å, this shows that the crystal size of both samples did not change significantly.    


Author(s):  
Lisheng Huang ◽  
Mingyong Yin ◽  
Changchun Li ◽  
Xin Wang

2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


Sign in / Sign up

Export Citation Format

Share Document