A mild and efficient method for the reduction of oximes to imines for futher in situ reactions

Author(s):  
Derek H. R. Barton ◽  
William B. Motherwell ◽  
Ethan S. Simon ◽  
Samir Z. Zard
1984 ◽  
Vol 15 (29) ◽  
Author(s):  
D. H. R. BARTON ◽  
W. B. MOTHERWELL ◽  
E. S. SIMON ◽  
S. Z. ZARD

2021 ◽  
Vol 203 ◽  
pp. 109538
Author(s):  
Boan Xu ◽  
Ping Jiang ◽  
Shaoning Geng ◽  
Yilin Wang ◽  
Jintian Zhao ◽  
...  

2016 ◽  
Vol 14 (2) ◽  
pp. 556-563 ◽  
Author(s):  
Veladi Panduranga ◽  
Girish Prabhu ◽  
Roopesh Kumar ◽  
Basavaprabhu Basavaprabhu ◽  
Vommina V. Sureshbabu

A simple and efficient method for the synthesis of N,N’-orthogonally protected imide tethered peptidomimetics is presented. The imide peptidomimetics were synthesized by coupling the in situ generated selenocarboxylate of Nα-protected amino acids with Nα-protected amino acid azides in good yields.


2014 ◽  
Vol 1023 ◽  
pp. 55-58
Author(s):  
Xiao Chuan Li ◽  
Shan Shan Gong ◽  
Qi Sun

A general and efficient method for the preparation of symmetrical dinucleoside diphosphates with purine bases has been developed. Ap2A and Gp2G were synthesized from the in situ hydrolysis of corresponding nucleoside 5′-phosphoropiperidates with 4,5-dicyanoimidazole as the activator. This method features easily accessible starting materials, simple procedures, and good yield.


Synlett ◽  
2018 ◽  
Vol 29 (15) ◽  
pp. 2015-2018 ◽  
Author(s):  
William Wulff ◽  
Xin Zhang ◽  
Yijing Dai

An efficient method was developed for the synthesis of α-amino ketones from α-hydroxy imines. The reaction occurs through an α-iminol rearrangement involving the migration of a substituent of the carbinol carbon to the imine carbon. The optimal catalysts were found to be silica gel or montmorillonite K 10, which effected migration of a variety of aryl and alkyl substituents in high yields. The rearrangement can also be carried out on imines generated in situ from aldehydes and amines in essentially the same yields as those from the preformed imines.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 554
Author(s):  
Fehmi Nair ◽  
Mustafa Hamamcı

The objective of this study is to investigate the impact behavior of iron-based composites reinforced with boron carbide (B4C) particles and in-situ synthesized iron borides (Fe2B/FeB). The composite specimens (Fe/B4C) were fabricated by hot-pressing under a pressure of 250 MPa at 500 °C, and sintered at a temperature of 1000 °C. The effects of the reinforcement ratio on the formation of in-situ borides and impact behavior were investigated by means of different volume fractions of B4C inside the iron matrix: 0% (un-reinforced), 5%, 10%, 20%, and 30%. Drop-weight impact tests were performed by an instrumented Charpy impactor on reinforced and un-reinforced test specimens. The results of the impact tests were supported with microstructural and fractographical analysis. As a result of in-situ reactions between the Fe matrix and B4C particles, Fe2B phases were formed in the iron matrix. The iron borides, formed in the iron matrix during sintering, heavily affected the hardness and the morphology of the fractured surface. Due to the high amount of B4C (over 10%), porosity played a major role in decreasing the contact forces and fracture energy. The results showed that the in-situ synthesized iron boride phases affect the impact properties of the Fe/B4C composites.


Author(s):  
Mohammad Shahid Raza ◽  
Susmita Datta ◽  
Partha Saha

Closed-cell aluminium foam, a porous structure, is effectively used for insulation, structural applications, packaging and filtering. Cutting of aluminium foam with the help of fibre laser is an efficient method due to the inherent advantages of fibre laser. Laser cutting of aluminium foam was carried out using a 2-kW fibre laser system for varying process parameters and different assist gas environments. Use of different foaming agents results in the generation of gas-filled pores. During the laser cutting process, the interaction of these gas-filled pores with assist gas results in in-situ reactions, generating different kerf quality. This interaction effect of foam cutting was reported using optical, metallurgical and thermal analysis. Thermal cycles were recorded to understand the occurrence of different in-situ reactions. From the temperature signal for different assist gases, oxygen showed the highest temperature, followed by nitrogen and argon. Argon assist gas gave minimum kerf width, while nitrogen assist gas produced minimum dross. Elemental and phase analysis showed the presence of new compounds and intermetallics in the cut section that stipulated the occurrence of in-situ reactions during the cutting process. The internal pore surface showed the presence of spatter in case of oxygen, while nitrogen and argon gas environment showed relatively less pore-clogging.


Sign in / Sign up

Export Citation Format

Share Document