scholarly journals A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening

2015 ◽  
Vol 3 (4) ◽  
pp. 581-585 ◽  
Author(s):  
A. I. Neto ◽  
C. R. Correia ◽  
M. B. Oliveira ◽  
M. I. Rial-Hermida ◽  
C. Alvarez-Lorenzo ◽  
...  

A novel hanging spherical drop system based on the use of biomimetic superhydrophobic flat substrates allows one to generate arrays of independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale.

2014 ◽  
Vol 59 (2) ◽  
pp. 753-762 ◽  
Author(s):  
Anita Ordas ◽  
Robert-Jan Raterink ◽  
Fraser Cunningham ◽  
Hans J. Jansen ◽  
Malgorzata I. Wiweger ◽  
...  

ABSTRACTThe translational value of zebrafish high-throughput screens can be improved when more knowledge is available on uptake characteristics of potential drugs. We investigated reference antibiotics and 15 preclinical compounds in a translational zebrafish-rodent screening system for tuberculosis. As a major advance, we have developed a new tool for testing drug uptake in the zebrafish model. This is important, because despite the many applications of assessing drug efficacy in zebrafish research, the current methods for measuring uptake using mass spectrometry do not take into account the possible adherence of drugs to the larval surface. Our approach combines nanoliter sampling from the yolk using a microneedle, followed by mass spectrometric analysis. To date, no single physicochemical property has been identified to accurately predict compound uptake; our method offers a great possibility to monitor how any novel compound behaves within the system. We have correlated the uptake data with high-throughput drug-screening data fromMycobacterium marinum-infected zebrafish larvae. As a result, we present an improved zebrafish larva drug-screening platform which offers new insights into drug efficacy and identifies potential false negatives and drugs that are effective in zebrafish and rodents. We demonstrate that this improved zebrafish drug-screening platform can complement conventional models ofin vivoMycobacterium tuberculosis-infected rodent assays. The detailed comparison of two vertebrate systems, fish and rodent, may give more predictive value for efficacy of drugs in humans.


Author(s):  
E. Gazzola ◽  
A. Pozzato ◽  
G. Ruffato ◽  
E. Sovernigo ◽  
A. Sonato

AbstractSurface plasmon resonance biosensors have recently known a rapid diffusion in the biological field and a large variety of sensor configurations is currently available. Biological applications are increasingly demanding sensor miniaturization, multiple detection in parallel, temperature-controlled environment and high sensitivity. Indeed, versatile and tunable sensing platforms, together with an accurate biological environment monitoring, could improve the realization of custom biosensing devices applicable to different biological reactions. Here we propose a smart and high throughput fabrication protocol for the realization of a custommicrofluidic plasmonic biochip that could be easily tuned and modified to address different biological applications. The sensor chip here presented shows a high sensing capability, monitored by an accurate signal calibration in the presence of concentration and temperature variation.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 2228-2236 ◽  
Author(s):  
Xuejia Hu ◽  
Shukun Zhao ◽  
Ziyi Luo ◽  
Yunfeng Zuo ◽  
Fang Wang ◽  
...  

Multicellular aggregates in three-dimensional (3D) environments provide novel solid tumor models that can provide insight into in vivo drug resistance.


2018 ◽  
Vol 24 (1) ◽  
pp. 28-40 ◽  
Author(s):  
Kelli M. Wilson ◽  
Lesley A. Mathews-Griner ◽  
Tara Williamson ◽  
Rajarshi Guha ◽  
Lu Chen ◽  
...  

Glioblastoma (GBM) is a lethal brain cancer with a median survival time of approximately 15 months following treatment. Common in vitro GBM models for drug screening are adherent and do not recapitulate the features of human GBM in vivo. Here we report the genomic characterization of nine patient-derived, spheroid GBM cell lines that recapitulate human GBM characteristics in orthotopic xenograft models. Genomic sequencing revealed that the spheroid lines contain alterations in GBM driver genes such as PTEN, CDKN2A, and NF1. Two spheroid cell lines, JHH-136 and JHH-520, were utilized in a high-throughput drug screen for cell viability using a 1912-member compound library. Drug mechanisms that were cytotoxic in both cell lines were Hsp90 and proteasome inhibitors. JHH-136 was uniquely sensitive to topoisomerase 1 inhibitors, while JHH-520 was uniquely sensitive to Mek inhibitors. Drug combination screening revealed that PI3 kinase inhibitors combined with Mek or proteasome inhibitors were synergistic. However, animal studies to test these drug combinations in vivo revealed that Mek inhibition alone was superior to the combination treatments. These data show that these GBM spheroid lines are amenable to high-throughput drug screening and that this dataset may deliver promising therapeutic leads for future GBM preclinical studies.


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 581-581
Author(s):  
Ricardo J. Antonia ◽  
Kan Toriguchi ◽  
Eveliina Karelehto ◽  
Dania Annuar ◽  
Luika Timmerman ◽  
...  

581 Background: Despite standard treatment with gemcitabine and cisplatin, median survival for unresectable Intrahepatic Cholangiocarcinoma (ICC) is < 1 year. Clearly, novel therapeutic strategies are urgently needed. The paucity of targetable mutations in ICC and the as yet unproven benefit of genetically targeted drugs led us to ask whether a reliable clinical benefit may be revealed by patient-specific therapeutic testing in novel models of ICC. Here we describe our ability to establish patient-derived three-dimensional organoid cultures (PDO) that enable individualized identification of active single agents or drug combinations in surrogate models of ICC. Methods: To model patient-specific drug responses, we used the freshly resected ICCs from small samples of single patient tumors to generate PDXs and PDOs, small spheroidal clusters of tumor cells grown in vitro. We have employed a high-throughput drug screening platform using AI-enhanced robotics (Yamaha Motor Corporation) to identify and distribute single, uniformly sized PDOs into 384-well ultra-low adherent plates. This is coupled with a TECAN D300e drug dispenser that rapidly delivers nanoliter volumes of a 34-drug panel, thereby facilitating rapid, reliable drug response analyses. Results: Our data show that PDOs retain characteristic genomic and histological features of the patients’ tumors. Drug responses were specific to each patient tumor, but PDOs from all patients responded to a greater or lesser degree to mTOR inhibition, suggesting that this pathway is important in ICC. The responses of PDO to the mTOR inhibitor Sapanisertib (INK128), was recapitulated in the same patient’s PDX. Further, INK128 was synergistic with gemcitabine in patient 970 PDOs as well as in vivo in PDX also from patient 970. Conclusions: As it is believed that PDX can predict patient responses to drugs, our results suggest that PDO may also predict patient drug responses. The establishment of PDO may allow economical patient-specific, high throughput drug screens that could ultimately inform clinical practice. [Table: see text]


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 497
Author(s):  
Diana Pinho ◽  
Denis Santos ◽  
Ana Vila ◽  
Sandra Carvalho

Colorectal cancer is the second leading cause of cancer death worldwide. Significant advances in the molecular mechanisms underlying colorectal cancer have been made; however, the clinical approval of new drugs faces many challenges. Drug discovery is a lengthy process causing a rapid increase in global health care costs. Patient-derived tumour organoids are considered preclinical models with the potential for preclinical drug screening, prediction of patient outcomes, and guiding optimized therapy strategies at an individual level. Combining microfluidic technology with 3D tumour organoid models to recapitulate tumour organization and in vivo functions led to the development of an appropriate preclinical tumour model, organoid-on-a-chip, paving the way for personalized cancer medicine. Herein, a low-cost microfluidic device suitable for culturing and expanding organoids, OrganoidChip, was developed. Patient-derived colorectal cancer organoids were cultured within OrganoidChip, and their viability and proliferative activity increased significantly. No significant differences were verified in the organoids’ response to 5-fluorouracil (5-FU) treatment on-chip and on-plate. However, the culture within the OrganoidChip led to a significant increase in colorectal cancer organoid-forming efficiency and overall size compared with conventional culture on a 24-well plate. Interestingly, early-stage and late-stage organoids were predominantly observed on-plate and within the OrganoidChip, respectively. The OrganoidChip thus has the potential to generate in vivo-like organotypic structures for disease modelling and drug screening applications.


2021 ◽  
Author(s):  
MoonSun Jung ◽  
Joanna Skhinas ◽  
Eric Y Du ◽  
Maria Kristine Tolentino ◽  
Robert Utama ◽  
...  

Understanding the underlying mechanisms of migration and metastasis is a key focus of cancer research. There is an urgent need to develop in vitro 3D tumor models that can mimic physiological cell-cell and cell-extracellular matrix interactions, with high reproducibility and that are suitable for high throughput (HTP) drug screening. Here, we developed a HTP 3D bioprinted migration model using a bespoke drop-on-demand bioprinting platform. This HTP platform coupled with tunable hydrogel systems enables (i) the rapid encapsulation of cancer cells within in vivo tumor mimicking matrices, (ii) in situ and real-time measurement of cell movement, (iii) detailed molecular analysis for the study of mechanisms underlying cell migration and invasion, and (iv) the identification of novel therapeutic options. This work demonstrates that this HTP 3D bioprinted cell migration platform has broad applications across quantitative cell and cancer biology as well as drug screening.


Sign in / Sign up

Export Citation Format

Share Document