Glutamate biosensors based on diamond and graphene platforms

2014 ◽  
Vol 172 ◽  
pp. 457-472 ◽  
Author(s):  
Jingping Hu ◽  
Sirikarn Wisetsuwannaphum ◽  
John S. Foord

l-Glutamate is one of the most important neurotransmitters in the mammalian central nervous system, playing a vital role in many physiological processes and implicated in several neurological disorders, for which monitoring of dynamic levels of extracellular glutamate in the living brain tissues may contribute to medical understanding and treatments. Electrochemical sensing of glutamate has been developed recently mainly using platinum, carbon fibre and carbon nanotube electrodes. In the present work, we explore the fabrication and properties of electrochemical glutamate sensors fabricated on doped chemical vapour deposition diamond electrodes and graphene nanoplatelet structures. The sensors incorporate platinum nanoparticles to catalyse the electrooxidation of hydrogen peroxide, glutamate oxidase to oxidise glutamate, and a layer of poly-phenylenediamine to impart selectivity. The performance of the devices was compared to a similar sensor fabricated on glassy carbon. Both the diamond and the graphene sensor showed very competitive performance compared to the majority of existing electrochemical sensors. The graphene based sensor showed the best performance of the three investigated in terms of sensitivity, linear dynamic range and long term stability, whereas it was found that the diamond device showed the best limit of detection.


Author(s):  
Totka Dodevska ◽  
Dobrin Hadzhiev ◽  
Ivan Shterev ◽  
Yanna Lazarova

Recently, the development of eco-friendly, cost-effective and reliable methods for synthesis of metal nanoparticles has drawn a considerable attention. The so-called green synthesis, using mild reaction conditions and natural resources as plant extracts and microorganisms, has established as a convenient, sustainable, cheap and environmentally safe approach for synthesis of a wide range of nanomaterials. Over the past decade, biosynthesis is regarded as an important tool for reducing the harmful effects of traditional nanoparticle synthesis methods commonly used in laboratories and industry. This review emphasizes the significance of biosynthesized metal nanoparticles in the field of electrochemical sensing. There is increasing evidence that green synthesis of nanoparticles provides a new direction in designing of cost-effective, highly sensitive and selective electrode-catalysts applicable in food, clinical and environmental analysis. The article is based on 157 references and provided a detailed overview on the main approaches for green synthesis of metal nanoparticles and their applications in designing of electrochemical sensor devices. Important operational characteristics including sensitivity, dynamic range, limit of detection, as well as data on stability and reproducibility of sensors have also been covered. Keywords: biosynthesis; green synthesis; nanomaterials; nanotechnology; modified electrodes



2017 ◽  
Vol 41 (14) ◽  
pp. 6667-6677 ◽  
Author(s):  
Mohammed M. Rahman ◽  
Mohammad Musarraf Hussain ◽  
Abdullah M. Asiri

Low-dimensional cadmium oxide nanoparticles (CdO NPs) were prepared by a facile wet-chemical method, which later electrochemically investigated for the determination of selective creatine and measured the analytical sensor parameters such as sensitivity, limit of detection (LOD), linear dynamic range (LDR), long-term stability, and real-sample validation.



Author(s):  
Fatemeh Irannezhad ◽  
Jamileh Seyed-Yazdi ◽  
Seyedeh Hoda Hekmatara

A sensitive electrochemical sensor was developed using reduced graphene oxide RGO-Cu2O/Fe2O3 nanocomposite for 6-mercaptopurine detection based on a facile fabrication method. The surface morphology and structural composition of this nanocomposite was evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR) spectroscopy. The screen-printed graphite electrode (SPGE) modified with RGO-Cu2O/Fe2O3 nanocomposite (RGO-Cu2O/Fe2O3/SPGE) indicated excellent electrochemical properties to detect 6-mercaptopurine. The linear dynamic range was estimated between 0.05 and 400.0 μM for 6-mercaptopurine detection, with a limit of detection of 0.03 μM. Also, RGO-Cu2O/Fe2O3/SPGE sensor showed good activity for simultaneous detection of 6-mercaptopurine and 6-thioguanine. In the coexistence system of 6-mercaptopurine and 6-thioguanine, two clear and well-isolated voltammetric peaks were obtained by differential pulse voltammetry (DPV). Additionally, the proposed sensor was examined for applicability by determining 6-mercaptopurine and 6-thioguanine in real samples, and the recovery in the range of 97.5-103.0 % was obtained.



Author(s):  
Rossella Svigelj ◽  
Nicolò Dossi ◽  
Cristian Grazioli ◽  
Rosanna Toniolo

AbstractPaper has been widely employed as cheap material for the development of a great number of sensors such as pregnancy tests, strips to measure blood sugar, and COVID-19 rapid tests. The need for new low-cost analytical devices is growing, and consequently the use of these platforms will be extended to different assays, both for the final consumer and within laboratories. This work describes a paper-based electrochemical sensing platform that uses a paper disc conveniently modified with recognition molecules and a screen-printed carbon electrode (SPCE) to achieve the detection of gluten in a deep eutectic solvent (DES). This is the first method coupling a paper biosensor based on aptamers and antibodies with the DES ethaline. Ethaline proved to be an excellent extraction medium allowing the determination of very low gluten concentrations. The biosensor is appropriate for the determination of gluten with a limit of detection (LOD) of 0.2 mg L−1 of sample; it can detect gluten extracted in DES with a dynamic range between 0.2 and 20 mg L−1 and an intra-assay coefficient of 10.69%. This approach can be of great interest for highly gluten-sensitive people, who suffer from ingestion of gluten quantities well below the legal limit, which is 20 parts per million in foods labeled gluten-free and for which highly sensitive devices are essential. Graphical abstract



2021 ◽  
Vol 9 ◽  
Author(s):  
Sopit Phetsang ◽  
Duangruedee Khwannimit ◽  
Parawee Rattanakit ◽  
Narong Chanlek ◽  
Pinit Kidkhunthod ◽  
...  

A novel copper (II) ions [Cu(II)]-graphene oxide (GO) nanocomplex-modified screen-printed carbon electrode (SPCE) is successfully developed as a versatile electrochemical platform for construction of sensors without an additionally external redox probe. A simple strategy to prepare the redox GO-modified SPCE is described. Such redox GO based on adsorbed Cu(II) is prepared by incubation of GO-modified SPCE in the Cu(II) solution. This work demonstrates the fabrications of two kinds of electrochemical sensors, i.e., a new label-free electrochemical immunosensor and non-enzymatic sensor for detections of immunoglobulin G (IgG) and glucose, respectively. Our immunosensor based on square-wave voltammetry (SWV) of the redox GO-modified electrode shows the linearity in a dynamic range of 1.0–500 pg.mL−1 with a limit of detection (LOD) of 0.20 pg.mL−1 for the detection of IgG while non-enzymatic sensor reveals two dynamic ranges of 0.10–1.00 mM (sensitivity = 36.31 μA.mM−1.cm−2) and 1.00–12.50 mM (sensitivity = 3.85 μA.mM−1.cm−2) with a LOD value of 0.12 mM. The novel redox Cu(II)-GO composite electrode is a promising candidate for clinical research and diagnosis.



Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 502
Author(s):  
Kaveh Moulaee ◽  
Giovanni Neri

The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.



2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wilson Silva Fernandes-Junior ◽  
Leticia Fernanda Zaccarin ◽  
Geiser Gabriel Oliveira ◽  
Paulo Roberto de Oliveira ◽  
Cristiane Kalinke ◽  
...  

The use of nanostructured materials is already well-known as a powerful tool in the development of electrochemical sensors. Among several immobilization strategies of nanomaterials in the development of electrochemical sensors, the use of low-cost and environmentally friendly polymeric materials is highlighted. In this context, a new nanostructured biocomposite electrode is proposed as an electrochemical sensor for the analysis and determination of tetracycline. The composite electrode consists of a modified glassy carbon electrode (GCE) with a nanodiamond-based (ND) and manioc starch biofilm (MS), called ND-MS/GCE. The proposed sensor showed better electrochemical performance in the presence of tetracycline in comparison to the unmodified electrode, which was attributed to the increase in the electroactive surface area due to the presence of nanodiamonds. A linear dynamic range from 5.0 × 10 − 6 to 1.8 × 10 − 4  mol L−1 and a limit of detection of 2.0 × 10 − 6  mol L−1 were obtained for the proposed sensor. ND-MS/GCE exhibited high repeatability and reproducibility for successive measurements with a relative standard deviation (RSD) of 6.3% and 1.5%, respectively. The proposed electrode was successfully applied for the detection of tetracycline in different kinds of water samples, presenting recoveries ranging from 86 to 112%.



2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pattan-Siddappa Ganesh ◽  
Ganesh Shimoga ◽  
Seok-Han Lee ◽  
Sang-Youn Kim ◽  
Eno E. Ebenso

Abstract Background A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers. Methods The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques. Results The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon. Conclusions The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed. Graphical abstract Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. Chetankumar ◽  
B. E. Kumara Swamy ◽  
S. C. Sharma ◽  
S. A. Hariprasad

AbstractIn this proposed work, direct green 6 (DG6) decorated carbon paste electrode (CPE) was fabricated for the efficient simultaneous and individual sensing of catechol (CA) and hydroquinone (HY). Electrochemical deeds of the CA and HY were carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at poly-DG6-modfied carbon paste electrode (Po-DG6-MCPE). Using scanning electron microscopy (SEM) studied the surface property of unmodified CPE (UCPE) and Po-DG6-MCPE. The decorated sensor displayed admirable electrocatalytic performance with fine stability, reproducibility, selectivity, low limit of detection (LLOD) for HY (0.11 μM) and CC (0.09 μM) and sensor process was originated to be adsorption-controlled phenomena. The Po-DG6-MCPE sensor exhibits well separated two peaks for HY and CA in CV and DPV analysis with potential difference of 0.098 V. Subsequently, the sensor was practically applied for the analysis in tap water and it consistent in-between for CA 93.25–100.16% and for HY 97.25–99.87% respectively.



Sign in / Sign up

Export Citation Format

Share Document