scholarly journals In situ nanofabrication of hybrid PEG-dendritic–inorganic nanoparticles and preliminary evaluation of their biocompatibility

Nanoscale ◽  
2015 ◽  
Vol 7 (9) ◽  
pp. 3933-3940 ◽  
Author(s):  
Ana Sousa-Herves ◽  
Christian Sánchez Espinel ◽  
Amir Fahmi ◽  
África González-Fernández ◽  
Eduardo Fernandez-Megia

An in situ template fabrication of inorganic nanoparticles using carboxylated PEG-dendritic block copolymers of the GATG family is described as a function of the dendritic block generation, the metal (Au, CdSe) and metal molar ratio.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Kyle Gipson ◽  
Brett Ellerbrock ◽  
Kathryn Stevens ◽  
Phil Brown ◽  
John Ballato

Inorganic nanoparticles doped with optically active rare-earth ions and coated with organic ligands were synthesized in order to create fluorescent polymethyl methacrylate (PMMA) nanocomposites. Two different aromatic ligands (acetylsalicylic acid, ASA and 2-picolinic acid, PA) were utilized in order to functionalize the surface of Tb3+ : LaF3nanocrystals. The selected aromatic ligand systems were characterized using infrared spectroscopy, thermal analysis, rheological measurements, and optical spectroscopy. Nanoparticles producedin situwith the PMMA contained on average 10 wt% loading of Tb3+ : LaF3at a 6 : 1 La : Tb molar ratio and ~7 wt% loading of 4 : 1 La : Tb molar ratio for the PA and ASA systems, respectively. Measured diameters ranged from457±176 nm to150±105 nm which is indicative that agglomerates formed during the synthesis process. Both nanocomposites exhibited the characteristic Tb3+emission peaks upon direct ion excitation (350 nm) and ligand excitation (PA : 265 nm and ASA : 275 nm).


2017 ◽  
Vol 75 ◽  
pp. 279-285 ◽  
Author(s):  
Maria José Moura ◽  
João Brochado ◽  
Maria Helena Gil ◽  
Maria Margarida Figueiredo

2021 ◽  
Vol 43 (2) ◽  
pp. 123-132
Author(s):  
N.A. Busko ◽  
◽  
V.K. Grishchenko ◽  
A.V. Barantsova ◽  
N.V. Gudzenko ◽  
...  

The aim of the work was to develop methods for the synthesis and study of the properties of silicon-containing oligomeric azo- and polyazoinitiators based on bis-γ-hydroxypropylpolysiloxane (HPS) and bis-γ-aminopropylpolysiloxane (APS). Silicon-containing oligomeric azoinitiators using HPS were synthesized on the basis of cyclohexanone azo-bis-isobutyrohydrazone (AGN-CH) and bis-γ-hydroxypropylpolysiloxane bifunctional macrodiisocyanate (MDIHPS). MDIHPS was obtained by the interaction of GPS with 2,4 toluene diisocyanate (2,4-TDI). Oligomeric azoinitiators have been obtained, which have the structure RXR and (RX)nR, where R is a propylpolysiloxane block, X is a azo initiator block. For the synthesis of an oligomeric azo initiator based on bis-γ-aminopropyl polysiloxane (APS), a method was first developed for the synthesis of a monomeric azo initiator with terminal oxadiazolinylcarbamanate isocyanate groups (AGN-NCO) by the interaction of AGN-CH and 2,4-TDI at a molar ratio of 1: 2. On the basis of the obtained AGN-NCO and APS at a molar ratio of AGN-NCO: APS = 1: 1, an oligomeric azo initiator (OAI APS-P) was synthesized, which has the structure (RX)nR, where R is a propylpolysiloxane block, X is an azo initiator block. The structures of monomeric and oligomeric azo initiators have been studied by UV and IR spectroscopy, and the kinetic regularities of their synthesis have been calculated. On the basis of oligomeric azo initiators and styrene, block copolymers of the (AB)nA type were obtained by the method of thermal and photoinitiated radical polymerization, where A is a propylpolysiloxane block, B is an oligosyrene block with a constant value of the organosilicon block and a different size of the oligostyrene block. The structure of block copolymers was investigated by IR spectroscopy. It was shown that during photopolymerization, oligostyrene blocks of shorter length are formed than during thermopolymerization, and possible oxidation processes. The study of relaxation transitions by DSC in oligostyrene and propylpolysiloxane blocks of the BCP showed that the common heat capacity curves are the presence of two jumps in the heat capacity at the glass transition temperatures of the polysiloxane and oligostyrene microphase. A slight shift in the glass transition temperature of polysiloxane microphases in BCP towards higher temperatures compared to the homopolymer may be associated with the effect of oligostyrene microphase. With a decrease in the length of the oligosyrene block, a low-temperature shift in the glass transition temperature of oligostyrene blocks relative to the homopolymer and a depression of ∆Cp,2 are observed, which is associated with the suppression of mobility in oligodienic microphases by less mobile propylpolysiloxane blocks.


2017 ◽  
Vol 72 (11) ◽  
pp. 765-774
Author(s):  
Daniel Rudolph ◽  
Sonja Laufer ◽  
Ingo Hartenbach

AbstractAttempts to synthesize Pr4Mo7O27 using Pr, Pr6O11 and MoO3 in a molar ratio of 8:6:77 led to a main product of scheelite-type Pr0.667[MoO4] and few single crystals of the triclinic A-type Pr6Mo10O39. The latter crystallizes in space group P1̅ (a=945.25(1), b=1058.49(2), c=1815.16(3) pm; α=104.149(1), β=95.220(1), γ=102.617(1)°, Z=2). Its crystal structure comprises six crystallographically independent Pr3+ cations, eight tetrahedral [MoO4]2− units, and one [Mo2O7]2− entity. The cations display coordination numbers of seven (1×) and eight (5×), while the [MoO4]2− tetrahedra are surrounded by five Pr3+ cations each. The [Mo2O7]2− anions exhibit a coordination environment of seven Pr3+ cations. The attempt to synthesize PrF[MoO4] using PrOF (from in situ thermal decomposition of PrF[CO3]) as reagent did not lead to the desired product but to monoclinic B-type Pr6Mo10O39. This slightly less dense modification compared to its triclinic analogue crystallizes in space group C2/c (a=1247.93(3), b=1989.68(6), c=1392.52 (4) pm, β=100.505(2)°, Z=4) with three crystallographically independent Pr3+ cations, four [MoO4]2− tetrahedra, and again one [Mo2O7]2− unit in the crystal structure. Thus, both Pr6Mo10O39 modifications are better described with the structured formula Pr6[MoO4]8[Mo2O7]. The coordination numbers around the Pr3+ cations are seven (1×) and eight (2×) while all four [MoO4]2− anions are again surrounded by five Pr3+ cations each. Six of the latter represent the coordination environment around the [Mo2O7]2− entities. Besides the thorough comparison of the crystal structures single crystal Raman spectra were recorded for both Pr6Mo10O39 phases.


2020 ◽  
Vol 8 ◽  
Author(s):  
Cristina Belda Marín ◽  
Vincent Fitzpatrick ◽  
David L. Kaplan ◽  
Jessem Landoulsi ◽  
Erwann Guénin ◽  
...  

Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.


2020 ◽  
Vol 59 (20) ◽  
pp. 9398-9407
Author(s):  
T. M. M. Santos ◽  
B. B. Chaves ◽  
J. S. Cerqueira ◽  
M. M. Canario ◽  
D. Bresolin ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 585 ◽  
Author(s):  
Hyeon Shin ◽  
Young-Je Kwark ◽  
Jin-Hae Chang

A series of linear aromatic copolyimides (Co-PIs) were synthesized by reacting 4,4′-biphthalic anhydride (BPA) with various molar contents of 2,2′-bis(trifluoromethyl)benzidine (TFB) and p-xylylenediamine (p-XDA) in N,N′-dimethylacetamide (DMAc). Co-PI films were fabricated by solution casting and thermal imidization with poly(amic acid) (PAA) on glass plates. The thermo-optical properties and gas permeabilities of Co-PI films composed of various molar ratios of p-XDA (0.2–1.0 relative to BPA) were investigated. Thermal properties were observed to deteriorate with increasing p-XDA concentration. However, oxygen-transmission rates (O2TRs) and optical transparencies improved with increasing p-XDA concentration. Co-PI hybrids with a 1:0.2:0.8 molar ratio of BPA:TFB:p-XDA and organically modified hectorite (STN) were prepared by the in situ intercalation method. The morphologies and the thermo-optical and gas permeation properties of the hybrids were examined as functions of STN loading (5–50 wt %). XRD and TEM revealed substantial increases in clay particle agglomeration in the Co-PI hybrid films as the clay loading was increased from 5 to 50 wt %. The coefficient of thermal expansion (CTE) and the O2TR of a Co-PI hybrid film were observed to improve with increasing STN concentration; however, its optical transparency decreased gradually with increasing STN concentration.


2020 ◽  
pp. 096739112095686
Author(s):  
Farzaneh Besharat ◽  
Mehrdad Manteghian ◽  
Mahdi Abdollahi

The present study aims to investigate the water diffusivity into polystyrene/ calcium sulfate (PS/CaSO4) nanocomposite samples as a threat to the intended reinforcing properties. For this purpose, CaSO4 nanoparticles were synthesized through a chemical reaction using polyethylene glycol as the stabilizing agent. The polystyrene/calcium sulfate nanocomposites were fabricated through in situ polymerization of styrene monomer and stearic acid coated CaSO4 nanoparticles. SEM analysis was applied to determine the size and shape of the produced nanoparticles. In addition, TEM analysis was applied to study the general morphology and structure of the nanocomposites in order to confirm the PS/CaSO4 nanocomposites formation. FTIR analysis was employed to study the surface functions and bonds formation in both the surface treatment and nanocomposite preparation steps. Water diffusivity into the nanocomposites was evaluated through samples water exposure followed by calculation of the effective diffusion coefficients (Deff) using the diffusion equation given by Fick’s 2nd law. The calculation results have revealed that the obtained Deff values for water diffusivity in PS/CaSO4 (1.5 wt.%) and pure PS samples were 8.73 × 10−20 and 11.1 × 10−20 m2/s, respectively.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 781 ◽  
Author(s):  
Sedakat Altinpinar ◽  
Wael Ali ◽  
Patrick Schuchardt ◽  
Pinar Yildiz ◽  
Hui Zhao ◽  
...  

On the basis of the major application for block copolymers to use them as separation membranes, lithographic mask, and as templates, the preparation of highly oriented nanoporous thin films requires the selective removal of the minor phase from the pores. In the scope of this study, thin film of polystyrene-block-poly(ethylene oxide) block copolymer with a photocleavable junction groups based on ortho-nitrobenzylester (ONB) (PS-hν-PEO) was papered via the spin coating technique followed by solvent annealing to obtain highly-ordered cylindrical domains. The polymer blocks are cleaved by means of a mild UV exposure and then the pore material is washed out of the polymer film by ultra-pure water resulting in arrays of nanoporous thin films to remove one block. The removal of the PEO materials from the pores was proven using the grazing-incidence small-angle X-ray scattering (GISAXS) technique. The treatment of the polymer film during the washing process was observed in real time after two different UV exposure time (1 and 4 h) in order to draw conclusions regarding the dynamics of the removal process. In-situ X-ray reflectivity measurements provide statistically significant information about the change in the layer thickness as well as the roughness and electron density of the polymer film during pore formation. 4 H UV exposure was found to be more efficient for PEO cleavage. By in-situ SFM measurements, the structure of the ultra-thin block copolymer films was also analysed and, thus, the kinetics of the washing process was elaborated. The results from both measurements confirmed that the washing procedure induces irreversible change in morphology to the surface of the thin film.


Sign in / Sign up

Export Citation Format

Share Document