Three-dimensional hybridized carbon networks for high performance thermoelectric applications

RSC Advances ◽  
2014 ◽  
Vol 4 (80) ◽  
pp. 42234-42239
Author(s):  
Xiaojian Tan ◽  
Hezhu Shao ◽  
Yanwei Wen ◽  
Huijun Liu ◽  
Guoqiang Liu

Our study revealed that thermoelectric performance of carbon networks are improved by reducing thermal conductivity with electronic transport less affected.

Nanoscale ◽  
2021 ◽  
Author(s):  
Shaoyang Xiong ◽  
Yue Qin ◽  
Linhong Li ◽  
Guoyong Yang ◽  
Maohua Li ◽  
...  

In order to meet the requirement of thermal performance with the rapid development of high-performance electronic devices, constructing a three-dimensional thermal transport skeleton is an effective method for enhancing thermal...


2020 ◽  
Vol 842 ◽  
pp. 63-68
Author(s):  
Xiao Zhang ◽  
Jian Zheng ◽  
Yong Qiang Du ◽  
Chun Ming Zhang

Three-dimensional (3D) network structure has been recognized as an efficient approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry, and infiltrating with polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m-1 K-1 by 919% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 117% and 563%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).


Author(s):  
Yasuhiro Kawase ◽  
Makoto Ikemoto ◽  
Masaya Sugiyama ◽  
Hidehiro Yamamoto ◽  
Hideki Kiritani

Three dimensional integrated circuits (3D-IC) have been proposed for the purpose of low power and high performance in recent years. Pre-applied inter chip fill is required for fine pitch interconnections, large chips, and also thin chips. In addition to them, pre-applied joining process with high thermal conductive inter chip fill (HT-ICF) is strongly required for the cooling of 3D-IC. Some kinds of matrix resins and thermal conductive fillers were simulated and evaluated for pre-applied ICF. As a result, matrix and cure agent appeared to be important to both pre-applied ICF process compatibility and thermal conductivity, so that we’d selected epoxy type matrix based on controlling super molecular structure due to its mesogen unit. And not only matrix but also filler appeared to be the key to improve thermal conductivity for pre-applied ICF at the same time. The thermal conductivity of conventional silica filler was only 1W/mK, so that, taking into account of thermal conductivity, density and its stability, we’d selected aluminum oxide and boron nitride as thermal conductive filler and optimized HT-ICF for pre-applied process. After composite was mixed and cured, some physical properties were measured and thermal conductivity was 1.8W/mK, CTE was below 21ppm/K and Tg was 120°C. Furthermore, new high thermal conductive filler was also studied. We’d synthesized completely new spherical BN (diameter <5um) and applied it to HT-ICF and the thermal conductivity was almost two times higher than conventional BN. In this study, we confirmed ICF physical characteristics and its pre-applied joining for 3D-IC and void-less joining was also discussed.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1121 ◽  
Author(s):  
Ziming Wang ◽  
Yiyang Cao ◽  
Decai Pan ◽  
Sen Hu

Natural graphite flakes possess high theoretical thermal conductivity and can notably enhance the thermal conductive property of polymeric composites. Currently, because of weak interaction between graphite flakes, it is hard to construct a three-dimensional graphite network to achieve efficient heat transfer channels. In this study, vertically aligned and interconnected graphite skeletons were prepared with graphene oxide serving as bridge and support via freeze-casting method. Three freezing temperatures were utilized, and the resulting graphite and graphene oxide network was filled in a polymeric matrix. Benefiting from the ultralow freezing temperature of −196 °C, the network and its composite occupied a more uniform and denser structure, which lead to enhanced thermal conductivity (2.15 W m−1 K−1) with high enhancement efficiency and prominent mechanical properties. It can be significantly attributed to the well oriented graphite and graphene oxide bridges between graphite flakes. This simple and effective strategy may bring opportunities to develop high-performance thermal interface materials with great potential.


Author(s):  
Decheng An ◽  
Jiangjing Wang ◽  
Jie Zhang ◽  
Xin Zhai ◽  
Zepeng Kang ◽  
...  

Nanoprecipitation is a routine method to decrease the thermal conductivity for advancing thermoelectric performance. However, the coarsening/Ostwald ripening of precipitates under temperature gradients in long-duration service deteriorates the efficacy of...


2019 ◽  
Vol 7 (48) ◽  
pp. 27361-27366 ◽  
Author(s):  
Jinfeng Dong ◽  
Jun Pei ◽  
Hua-Lu Zhuang ◽  
Haihua Hu ◽  
Bowen Cai ◽  
...  

All scale hierarchical structure induced low thermal conductivity promises high thermoelectric performance of electron doped GeMnTe2.


RSC Advances ◽  
2014 ◽  
Vol 4 (106) ◽  
pp. 61549-61549
Author(s):  
Xiaojian Tan ◽  
Hezhu Shao ◽  
Yanwei Wen ◽  
Huijun Liu ◽  
Guoqiang Liu

Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Peng-Peng Shang ◽  
Jinfeng Dong ◽  
Jun Pei ◽  
Fu-Hua Sun ◽  
Yu Pan ◽  
...  

Thermoelectric materials, which directly convert heat into electricity based on the Seebeck effects, have long been investigated for use in semiconductor refrigeration or waste heat recovery. Among them, SnSe has attracted significant attention due to its promising performance in both p-type and n-type crystals; in particular, a higher out-of-plane ZT value could be achieved in n-type SnSe due to its 3D charge and 2D phonon transports. In this work, the thermoelectric transport properties of n-type polycrystalline SnSe were investigated with an emphasis on the out-of-plane transport through producing textural microstructure. The textures were fabricated using mechanical alloying and repeated spark plasma sintering (SPS), as a kind of hot pressing, aimed at producing strong anisotropic transports in n-type polycrystalline SnSe as that in crystalline SnSe. Results show that the lowest thermal conductivity of 0.36 Wm-1 K-1 was obtained at 783 K in perpendicular to texture direction. Interestingly, the electrical transport properties are less anisotropic and even nearly isotropic, and the power factors reach 681.3 μWm-1 K-2 at 783 K along both parallel and perpendicular directions. The combination of large isotropic power factor and low anisotropic thermal conductivity leads to a maximum ZT of 1.5 at 783 K. The high performance elucidates the outstanding electrical and thermal transport behaviors in n-type polycrystalline SnSe, and a higher thermoelectric performance can be expected with future optimizing texture in n-type polycrystalline SnSe.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2523 ◽  
Author(s):  
Hyun Ju ◽  
Myeongjin Kim ◽  
Jinglei Yang ◽  
Jooheon Kim

Chalcogenide-based materials have attracted widespread interest in high-performance thermoelectric research fields. A strategy for the application of two types of chalcogenide for improved thermoelectric performance is described herein. Tin selenide (SnSe) is used as a base material, and Te nanoneedles are crystallized in the SnSe, resulting in the generation of a composite structure of SnSe with Te nanoneedles. The thermoelectric properties with various reaction times are investigated to reveal the optimum conditions for enhanced thermoelectric performance. A reaction time of 4 h at 450 K generated a composite Te nanoneedles/SnSe sample with the maximum ZT value, 3.2 times larger than that of the pristine SnSe. This result is attributed to both the reduced thermal conductivity from the effective phonon scattering of heterointerfaces and the improved electrical conductivity value due to the introduction of Te nanoparticles. This strategy suggests an approach to generating high-performance practical thermoelectric materials.


Sign in / Sign up

Export Citation Format

Share Document