Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies

Nanoscale ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 3008-3018 ◽  
Author(s):  
Amit S. Pawbake ◽  
Mahendra S. Pawar ◽  
Sandesh R. Jadkar ◽  
Dattatray J. Late

We investigate the growth mechanism and temperature dependent Raman spectroscopy of chemical vapor deposited large area monolayer of MoS2, MoSe2, WS2 and WSe2 nanosheets up to 70 μm in lateral size.

Nanoscale ◽  
2021 ◽  
Author(s):  
Anh Tuan Hoang ◽  
Kairui Qu ◽  
Xiang Chen ◽  
Jong-Hyun Ahn

This article reviews the latest advances in the synthesis of wafer-scale thin films using chemical vapor deposition and solution-based methods and various device applications.


Nanoscale ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 336-341 ◽  
Author(s):  
Kehao Zhang ◽  
Bhakti Jariwala ◽  
Jun Li ◽  
Natalie C. Briggs ◽  
Baoming Wang ◽  
...  

Large area 2D MoS2 and WSe2 are integrated on 3D GaN by metal organic chemical vapor deposition (MOCVD). The thickness-dependent vertical tunneling and interlayer charge transfer is carefully studied. This work shows that few layer WSe2 film is the appropriate choice towards device application of synthetic 2D/3D heterostructures.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonathan Bradford ◽  
Mahnaz Shafiei ◽  
Jennifer MacLeod ◽  
Nunzio Motta

Abstract Van der Waals heterostructures of monolayer transition metal dichalcogenides (TMDs) and graphene have attracted keen scientific interest due to the complementary properties of the materials, which have wide reaching technological applications. Direct growth of uniform, large area TMDs on graphene substrates by chemical vapor deposition (CVD) is limited by slow lateral growth rates, which result in a tendency for non-uniform multilayer growth. In this work, monolayer and few-layer WS2 was grown on epitaxial graphene on SiC by sulfurization of WO3−x thin films deposited directly onto the substrate. Using this method, WS2 growth was achieved at temperatures as low as 700 °C – significantly less than the temperature required for conventional CVD. Achieving long-range uniformity remains a challenge, but this process could provide a route to synthesize a broad range of TMD/graphene van der Waals heterostructures with novel properties and functionality not accessible by conventional CVD growth.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Caihong Li ◽  
Juntong Zhu ◽  
Wen Du ◽  
Yixuan Huang ◽  
Hao Xu ◽  
...  

AbstractMonolayer transition metal dichalcogenides (TMDs) show promising potential for next-generation optoelectronics due to excellent light capturing and photodetection capabilities. Photodetectors, as important components of sensing, imaging and communication systems, are able to perceive and convert optical signals to electrical signals. Herein, the large-area and high-quality lateral monolayer MoS2/WS2 heterojunctions were synthesized via the one-step liquid-phase chemical vapor deposition approach. Systematic characterization measurements have verified good uniformity and sharp interfaces of the channel materials. As a result, the photodetectors enhanced by the photogating effect can deliver competitive performance, including responsivity of ~ 567.6 A/W and detectivity of ~ 7.17 × 1011 Jones. In addition, the 1/f noise obtained from the current power spectrum is not conductive to the development of photodetectors, which is considered as originating from charge carrier trapping/detrapping. Therefore, this work may contribute to efficient optoelectronic devices based on lateral monolayer TMD heterostructures.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1032 ◽  
Author(s):  
Shrawan Roy ◽  
Anir S. Sharbirin ◽  
Yongjun Lee ◽  
Won Bin Kim ◽  
Tae Soo Kim ◽  
...  

In general, the quantum yields (QYs) of monolayer transition metal dichalcogenides (1L-TMDs) are low, typically less than 1% in their pristine state, significantly limiting their photonic applications. Many methods have been reported to increase the QYs of 1L-TMDs; however, the technical difficulties involved in the reliable estimation of these QYs have prevented the general assessment of these methods. Herein, we demonstrate the estimation of the QYs of 1L-TMDs using a poly methyl methacrylate (PMMA) thin film embedded with rhodamine 6G (R6G) as a reference specimen for measuring the QYs of 1L-TMDs. The PMMA/R6G composite films with thicknesses of 80 and 300 nm demonstrated spatially homogeneous emissions with the incorporation of well-dispersed R6G molecules, and may, therefore, be used as ideal reference specimens for the QY measurement of 1L-TMDs. Using our reference specimens, for which the QY ranged from 5.4% to 22.2% depending on the film thickness and R6G concentrations, we measured the QYs of the exfoliated or chemical vapor deposition (CVD)-grown 1L-WS2, -MoSe2, -MoS2, and -WSe2 TMDs. The convenient procedure proposed in this study for preparing the thin reference films and the simple protocol for the QY estimation of 1L-TMDs may enable accurate comparisons of the absolute QYs between the 1L-TMD samples, thereby enabling the development of a method to improve the QY of 1L-TMDs.


2020 ◽  
Vol 15 (6) ◽  
pp. 673-678
Author(s):  
Soo-Young Kang ◽  
Gil-Sung Kim ◽  
Min-Sung Kang ◽  
Won-Yong Lee ◽  
No-Won Park ◽  
...  

Transition metal dichalcogenides (TMDs) are layered two-dimensional (2D) semiconductors and have received significant attention for their potential application in field effect transistors (FETs), owing to their inherent characteristics. Among the various reported 2D TMD materials, monolayer (ML) molybdenum disulfide (MoS2) is being considered as a promising channel material for the fabrication of future transistors with gate lengths as small as ∼1 nm. In this work, we present chemical vapor deposition-grown triangular ML MoS2 with a lateral size of ∼22 μm and surface coverage of ∼47%, as well as a PMMA-based wet transfer process for depositing the as-grown triangular ML MoS2 flakes onto a SiO2 (∼100 nm)/p++-Si substrate. Additionally, we demonstrate the fabrication of an n-type MoS2-based FET device and study its electrical characteristics as a function of the gate voltage. Our FET device shows an excellent on/off ratio of ∼106, an off-state leakage current of less than 10– 12 A, and a field effect mobility of ∼10.4 cm2/Vs at 300 K.


Sign in / Sign up

Export Citation Format

Share Document