Synthesis of meso-(4′-cyanophenyl) porphyrins: efficient photocytotoxicity against A549 cancer cells and their DNA interactions

RSC Advances ◽  
2015 ◽  
Vol 5 (66) ◽  
pp. 53618-53622 ◽  
Author(s):  
Dalip Kumar ◽  
Bhupendra Mishra ◽  
K. P. Chandrashekar ◽  
Santosh B. Khandagale ◽  
Mukund P. Tantak ◽  
...  

A facile I(iii)-mediated synthesis of cyanoporphyrins and their significant photocytotoxicity (IC50 = 54 nM) against A549 cancer cell line has been described.

2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2019 ◽  
Vol 16 (5) ◽  
pp. 522-532 ◽  
Author(s):  
Bedia Kocyigit-Kaymakcioglu ◽  
Senem Sinem Yazici ◽  
Fatih Tok ◽  
Miriş Dikmen ◽  
Selin Engür ◽  
...  

Background: Hydrazones, one of the important classes of organic molecules, are pharmaceutical agents comprising –CO-NH-N=CH- group in the structure therefore and exhibiting significant biological activity. Methods: 5-Chloro-N’-[(substituted)methylidene] pyrazine-2-carbohydrazide (3a-g) and their Pd(II) complexes (4a-h) were synthesized and investigated in vitro anticancer activity on A549, Caco2 cancer and normal 3T3 fibroblast cell lines, using the MTT assay. Results: Anticancer activity screening results revealed that some compounds showed remarkable cytotoxic effect. Among them, 5-chloro-N'-[(4-hydroxyphenyl)methylidene] pyrazine-2-carbohydrazide (3c) displayed higher cytotoxic activity against A549 cancer cell line than the reference drug cisplatin. Conclusion: Compound 3c showed high cytotoxic activity against A549 cancer cell line but it showed low cytotoxic effect against normal 3T3 fibroblast cell line. Antiproliferative and antimetastatic effects of 3c were determined by the real-time monitoring of cell proliferative system (RTCA DP). The cell proliferation, metastatic and invasive activities of A549 cells were decreased due to increased concentration of 3c.


2021 ◽  
Vol 22 (14) ◽  
pp. 7698
Author(s):  
Sara Peri ◽  
Alessio Biagioni ◽  
Giampaolo Versienti ◽  
Elena Andreucci ◽  
Fabio Staderini ◽  
...  

Chemotherapy is still widely used as a coadjutant in gastric cancer when surgery is not possible or in presence of metastasis. During tumor evolution, gatekeeper mutations provide a selective growth advantage to a subpopulation of cancer cells that become resistant to chemotherapy. When this phenomenon happens, patients experience tumor recurrence and treatment failure. Even if many chemoresistance mechanisms are known, such as expression of ATP-binding cassette (ABC) transporters, aldehyde dehydrogenase (ALDH1) activity and activation of peculiar intracellular signaling pathways, a common and universal marker for chemoresistant cancer cells has not been identified yet. In this study we subjected the gastric cancer cell line AGS to chronic exposure of 5-fluorouracil, cisplatin or paclitaxel, thus selecting cell subpopulations showing resistance to the different drugs. Such cells showed biological changes; among them, we observed that the acquired chemoresistance to 5-fluorouracil induced an endothelial-like phenotype and increased the capacity to form vessel-like structures. We identified the upregulation of thymidine phosphorylase (TYMP), which is one of the most commonly reported mutated genes leading to 5-fluorouracil resistance, as the cause of such enhanced vasculogenic ability.


2021 ◽  
Vol 17 ◽  
pp. 174480692110240
Author(s):  
Silvia Gutierrez ◽  
James C Eisenach ◽  
M Danilo Boada

Some types of cancer are commonly associated with intense pain even at the early stages of the disease. The mandible is particularly vulnerable to metastasis from breast cancer, and this process has been studied using a bioluminescent human breast cancer cell line (MDA-MB-231LUC+). Using this cell line and anatomic and neurophysiologic methods in the trigeminal ganglion (TG), we examined the impact of cancer seeding in the mandible on behavioral evidence of hypersensitivity and on trigeminal sensory neurons. Growth of cancer cells seeded to the mandible after arterial injection of the breast cancer cell line in Foxn1 animals (allogeneic model) induced behavioral hypersensitivity to mechanical stimulation of the whisker pad and desensitization of tactile and sensitization of nociceptive mechanically sensitive afferents. These changes were not restricted to the site of metastasis but extended to sensory afferents in all three divisions of the TG, accompanied by widespread overexpression of substance P and CGRP in neurons through the ganglion. Subcutaneous injection of supernatant from the MDA-MB-231LUC+ cell culture in normal animals mimicked some of the changes in mechanically responsive afferents observed with mandibular metastasis. We conclude that released products from these cancer cells in the mandible are critical for the development of cancer-induced pain and that the overall response of the system greatly surpasses these local effects, consistent with the widespread distribution of pain in patients. The mechanisms of neuronal plasticity likely occur in the TG itself and are not restricted to afferents exposed to the metastatic cancer microenvironment.


2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2094554
Author(s):  
Chao Tong ◽  
Ri-Hui Chen ◽  
Ding-Cheng Liu ◽  
De-Sheng Zeng ◽  
Hui Liu

A new neolignan, (7 S,8 R)- threo-1′-[3′-hydroxy-7-(4-hydroxy-3,5-dimethoxyphenyl)-8-hydroxymethyl-7,8-dihydrobenzofuran]acrylaldehyde (1), along with 5 known compounds 2-6, were isolated from the fruits of Xanthium strumarium. Their structures were elucidated by extensive spectroscopic methods. All the isolates were evaluated for in vitro cytotoxicity against human cancer cell lines, including human hepatoma cell line (HepG2), human breast cancer cell line (MCF-7), human colon cancer cell line (HCT-116), and human gastric cancer cell line (SGC-7901). Among them, compounds 1 and 3 showed selective cytotoxicity on HepG2 cancer cells with half-maximal inhibitory concentration (IC50) values of 10.2 ± 1.2 and 18.3 ± 1.6 μM, respectively. Moreover, compound 5 also exhibited moderate cytotoxicity against MCF-7 cancer cells with an IC50 value of 20.5 ± 1.3 μM.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 136 ◽  
Author(s):  
Paivana ◽  
Mavrikou ◽  
Kaltsas ◽  
Kintzios

Cancer cell lines are important tools for anticancer drug research and assessment. Impedance measurements can provide valuable information about cell viability in real time. This work presents the proof-of-concept development of a bioelectrical, impedance-based analysis technique applied to four adherent mammalian cancer cells lines immobilized in a three-dimensional (3D) calcium alginate hydrogel matrix, thus mimicking in vivo tissue conditions. Cells were treated with cytostatic agent5-fluoruracil (5-FU). The cell lines used in this study were SK-N-SH, HEK293, HeLa, and MCF-7. For each cell culture, three cell population densities were chosen (50,000, 100,000, and 200,000 cells/100 μL). The aim of this study was the extraction of mean impedance values at various frequencies for the assessment of the different behavior of various cancer cells when 5-FU was applied. For comparison purposes, impedance measurements were implemented on untreated immobilized cell lines. The results demonstrated not only the dependence of each cell line impedance value on the frequency, but also the relation of the impedance level to the cell population density for every individual cell line. By establishing a cell line-specific bioelectrical behavior, it is possible to obtain a unique fingerprint for each cancer cell line reaction to a selected anticancer agent.


2017 ◽  
Vol 474 (22) ◽  
pp. 3733-3746 ◽  
Author(s):  
Fatima Lahdaoui ◽  
Mathieu Messager ◽  
Audrey Vincent ◽  
Flora Hec ◽  
Anne Gandon ◽  
...  

Secreted mucins are large O-glycosylated proteins that participate in the protection/defence of underlying mucosae in normal adults. Alteration of their expression is a hallmark of numerous epithelial cancers and has often been correlated to bad prognosis of the tumour. The secreted mucin MUC5B is overexpressed in certain subtypes of gastric and intestinal cancers, but the consequences of this altered expression on the cancer cell behaviour are not known. To investigate the role of MUC5B in carcinogenesis, its expression was knocked-down in the human gastric cancer cell line KATO-III and in the colonic cancer cell line LS174T by using transient and stable approaches. Consequences of MUC5B knocking-down on cancer cells were studied with respect to in vitro proliferation, migration and invasion, and in vivo on tumour growth using a mouse subcutaneous xenograft model. Western blotting, luciferase assay and qRT–PCR were used to identify proteins and signalling pathways involved. In vitro MUC5B down-regulation leads to a decrease in proliferation, migration and invasion properties in both cell lines. Molecular mechanisms involved the alteration of β-catenin expression, localization and activity and decreased expression of several of its target genes. In vivo xenografts of MUC5B-deficient cells induced a decrease in tumour growth when compared with MUC5B-expressing Mock cells. Altogether, the present study shows that down-regulation of MUC5B profoundly alters proliferation, migration and invasion of human gastrointestinal cancer cells and that these alterations may be, in part, mediated by the Wnt/β-catenin pathway emphasizing the potential of MUC5B as an actor of gastrointestinal carcinogenesis.


Drug Research ◽  
2018 ◽  
Vol 68 (06) ◽  
pp. 335-343 ◽  
Author(s):  
Raana Bagheri ◽  
Zohreh Sanaat ◽  
Nosratollah Zarghami

Abstract Background Telomerase is known as a global therapeutic target in cancer cells due to its main role in tumorigenesis. Nowadays, it is proposed new treatment methods based on molecular target therapy by bioactive substances such as curcumin and chrysin with fewer side effects than other chemical drugs. But due to their low aqueous solubility and high clearance in the bloodstream it can be used of nanoparticles to increase their half-life and biocompatibility of them. Therefore, the goal of this study was to evaluate the effect of Chrysin-Curcumin on the expression of telomerase gene in SW480 colorectal cancer cell line. Material and method PLGA-PEG nanoparticles synthesized and were confirmed using by the scanning electron microscope (SEM) and FTIR Spectroscopy. After treatment of SW480 cells by curcumin and chrysin loaded nanoparticles, their toxicity to cancer cells, was evaluated by MTT. Then, the inhibition of hTERT gene expression was measured using qRT-PCR method. Result The results of MTT test showed nanocapsulated curcumin and chrysin compared with free forms of these compounds have high synergistic effect on sw480 cells. Also, real time-PCR showed significant decrease in hTERT gene expression in SW480 cells that treated with nano-curcumin and nano-chrysin compare to untreated cells. Conclusion Nano-encapsulation of curcumin and chrysin enhanced delivery of these compounds to SW480 colorectal cancer cells and therefore it can be conclude that PLGA-PEG nanoparticles promote anticancer effects of curcumin-chrysin by increasing bioavailability and the solubility of these drugs.


Sign in / Sign up

Export Citation Format

Share Document