Single and bicomponent anionic dyes adsorption equilibrium studies on magnolia-leaf-based porous carbons

RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 63970-63977 ◽  
Author(s):  
Huijing Yu ◽  
Tingting Wang ◽  
Wei Dai ◽  
Xianxing Li ◽  
Xin Hu ◽  
...  

A new type of porous carbon derived from magnolia leaf plays an important role in the adsorption of anionic dyes.

2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1280
Author(s):  
Vu Duc Canh ◽  
Seiichiro Tabata ◽  
Shun Yamanoi ◽  
Yoichi Onaka ◽  
Toshiyuki Yokoi ◽  
...  

Porous carbons are well-known efficient adsorbents for a variety of organic and inorganic pollutants; however, they have difficulty in virus removal. In this study, novel porous carbons (NPCs) (NPC-A, NPC-B, and NPC-C) derived from rice husks were compared with commercially available activated carbons (ACs) for their ability to remove MS2 bacteriophages (MS2) in a batch experiment. NPC-A was produced by the silica removal process. NPC-B was prepared with an additional steam activation applied to NPC-A. NPC-C was obtained with an additional acid rinse applied to NPC-B. The NPCs (particularly NPC-C) exhibited effective removal of up to 5.3 log10 of MS2, which was greater than that of less than 2.7 log10 obtained by other ACs under 10 g/L during the same contact time (60 min). The pore size distribution of the porous carbon adsorbents was found to influence their virus removal performance. The adsorbents with a larger proportion of pores ranging from 200–4500 nm in diameter were able to achieve higher virus removal rates. Thus, NPCs (particularly NPC-C), which had a larger volume of pores ranging from 200–4500 nm in size, demonstrated the potential for use as efficient adsorbents for removing viruses during water purification.


2003 ◽  
Vol 38 (2) ◽  
pp. 393-411 ◽  
Author(s):  
Soufiane Tahiri ◽  
Ali Messaoudi ◽  
Abderrahman Albizane ◽  
Mohamed Azzi ◽  
Mohamed Bouhria ◽  
...  

Abstract In this work, the ability of chrome shavings and of crust leather buffing dusts to remove dyes from aqueous solutions has been studied. Buffing dusts proved to be a much better adsorbent than chrome shavings for cationic dyes. The adsorption of anionic dyes is very important on two studied wastes. The pH has an obvious influence on the adsorption of dyes. Adsorption of cationic dyes is less favourable under acidic conditions (pH <3.5) and at high pH values (pH >10.5). The adsorption of anionic dyes on both adsorbents is more favourable under acidic conditions (pH <3). The adsorption on chrome shavings is improved by the use of finer particles. The kinetic adsorption was also studied. Adsorption isotherms, at the optimum operating conditions, were determined. Adsorption follows the Langmuir model. The isotherm parameters have been calculated. The column technique could be applied to treat significant volumes of solutions.


RSC Advances ◽  
2015 ◽  
Vol 5 (21) ◽  
pp. 16575-16581 ◽  
Author(s):  
Mingbo Wu ◽  
Peng Li ◽  
Yang Li ◽  
Jun Liu ◽  
Yang Wang

Porous carbons were prepared from enteromorpha with ZnCl2 as active reagent. The prepared porous carbon with a specific surface area of 1651 m2 g−1 exhibited a specific capacitance of 206 F g−1 and capacity retention of 93% even after 5000 cycles.


RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 27860-27867
Author(s):  
Xinxian Zhong ◽  
Quanyuan Mao ◽  
Zesheng Li ◽  
Zhigao Wu ◽  
Yatao Xie ◽  
...  

Biomass-derived heteroatom self-doped porous carbons are expected to become ideal active materials for high performance supercapacitor.


2019 ◽  
Vol 43 (48) ◽  
pp. 19372-19378 ◽  
Author(s):  
Jianyu Huang ◽  
Simin Liu ◽  
Zifang Peng ◽  
Zhuoxian Shao ◽  
Yuanyuan Zhang ◽  
...  

The synergistic effects of high surface area and abundant heteroatoms make porous carbons superior electrode materials.


2019 ◽  
Vol 48 (37) ◽  
pp. 13953-13959 ◽  
Author(s):  
Zakary Lionet ◽  
Shun Nishijima ◽  
Tae-Ho Kim ◽  
Yu Horiuchi ◽  
Soo Wohn Lee ◽  
...  

Pyrolysis of metal–organic frameworks (MOFs) to produce metal nanoparticles embedded inside a porous carbon matrix (M@PC) has drawn a lot of attention in recent years.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1914
Author(s):  
Zhenqing Li ◽  
Xin Chen ◽  
Lulu Qiu ◽  
Yu Wang ◽  
Zhiqin Zhou

The by-product of citrus juice processing is a huge source of bioactive compounds, especially polymethoxyflavones (PMFs) and fibers. In this study, a method for the separation and purification of PMFs from citrus pomace was established based on citrus nanoporous carbon (CNPC) enrichment. Different biomass porous carbons were synthesized, their adsorption/desorption characteristics were evaluated, and the CNPCs from the peel of Citrus tangerina Tanaka were found to be best for the enrichment of PMFs from the crude extracts of citrus pomace. Using this method, six PMF compounds including low-abundant PMFs in citrus fruits such as 5,6,7,4′-tetramethoxyflavone and 5-hydroxy-6,7,8,3′,4′-pentamethoxyflavone can be simultaneously obtained, and the purities of these compounds were all higher than 95%, with the highest purity of nobiletin reaching 99.96%. Therefore, CNPCs have a great potential for the separation and purification of PMFs in citrus processing wastes, potentially improving the added value of citrus wastes. We also provide a method reference for disposing of citrus pomace in the future.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3128 ◽  
Author(s):  
Jie Li ◽  
Chen Si ◽  
Haiyan Zhao ◽  
Qingxi Meng ◽  
Bowen Chang ◽  
...  

The magnetic adsorbent, Fe3O4@[Ni(HL)2]2H2[P2Mo5O23]·2H2O (Fe3O4@1), is synthesized by employing the nanoparticles Fe3O4 and polyoxometalate hybrid 1. Zero-field-cooled (ZFC) and field-cooled (FC) curves show that the blocking temperature of Fe3O4@1 was at 120 K. Studies of Fe3O4@1 removing cationic and anionic dyes from water have been explored. The characterization of Fe3O4@1, effects of critical factors such as dosage, the concentration of methylene blue (MB), pH, adsorption kinetics, isotherm, the removal selectivity of substrate and the reusability of Fe3O4@1 were assessed. The magnetic adsorbent displayed an outstanding removal activity for the cationic dye at a broad range of pH. The adsorption kinetics and isotherm models revealed that the adsorption process of Fe3O4@1 was mainly governed via chemisorption. The maximum capacity of Fe3O4@1 adsorbing substance was 41.91 mg g−1. Furthermore, Fe3O4@1 showed its high stability by remaining for seven runs of the adsorption-desorption process with an effective MB removal rate, and could also be developed as a valuable adsorbent for dyes elimination from aqueous system.


2016 ◽  
Vol 26 (47) ◽  
pp. 8650-8650 ◽  
Author(s):  
Wenjie Tian ◽  
Huayang Zhang ◽  
Hongqi Sun ◽  
Alexandra Suvorova ◽  
Martin Saunders ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document