scholarly journals Synthesis and analysis of novel analogues of dexrazoxane and its open-ring hydrolysis product for protection against anthracycline cardiotoxicity in vitro and in vivo

2015 ◽  
Vol 4 (4) ◽  
pp. 1098-1114 ◽  
Author(s):  
Anna Jirkovská-Vávrová ◽  
Jaroslav Roh ◽  
Olga Lenčová-Popelová ◽  
Eduard Jirkovský ◽  
Kateřina Hrušková ◽  
...  

Topoisomerase II beta, rather than (or along with) iron chelation, may be a promising target for cardioprotection.

Author(s):  
Eduard Jirkovský ◽  
Anna Jirkovská ◽  
Hana Bavlovič-Piskáčková ◽  
Veronika Skalická ◽  
Zuzana Pokorná ◽  
...  

Background: Anthracycline-induced heart failure has been traditionally attributed to direct iron-catalyzed oxidative damage. Dexrazoxane (DEX)—the only drug approved for its prevention—has been believed to protect the heart via its iron-chelating metabolite ADR-925. However, direct evidence is lacking, and recently proposed TOP2B (topoisomerase II beta) hypothesis challenged the original concept. Methods: Pharmacokinetically guided study of the cardioprotective effects of clinically used DEX and its chelating metabolite ADR-925 (administered exogenously) was performed together with mechanistic experiments. The cardiotoxicity was induced by daunorubicin in neonatal ventricular cardiomyocytes in vitro and in a chronic rabbit model in vivo (n=50). Results: Intracellular concentrations of ADR-925 in neonatal ventricular cardiomyocytes and rabbit hearts after treatment with exogenous ADR-925 were similar or exceeded those observed after treatment with the parent DEX. However, ADR-925 did not protect neonatal ventricular cardiomyocytes against anthracycline toxicity, whereas DEX exhibited significant protective effects (10–100 µmol/L; P <0.001). Unlike DEX, ADR-925 also had no significant impact on daunorubicin-induced mortality, blood congestion, and biochemical and functional markers of cardiac dysfunction in vivo (eg, end point left ventricular fractional shortening was 32.3±14.7%, 33.5±4.8%, 42.7±1.0%, and 41.5±1.1% for the daunorubicin, ADR-925 [120 mg/kg]+daunorubicin, DEX [60 mg/kg]+daunorubicin, and control groups, respectively; P <0.05). DEX, but not ADR-925, inhibited and depleted TOP2B and prevented daunorubicin-induced genotoxic damage. TOP2B dependency of the cardioprotective effects was probed and supported by experiments with diastereomers of a new DEX derivative. Conclusions: This study strongly supports a new mechanistic paradigm that attributes clinically effective cardioprotection against anthracycline cardiotoxicity to interactions with TOP2B but not metal chelation and protection against direct oxidative damage.


2021 ◽  
Author(s):  
Min Pan ◽  
William C. Wright ◽  
Rich Chapple ◽  
Asif Zubair ◽  
Manbir Sandhu ◽  
...  

ABSTRACTSurvival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. These findings are important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity—often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Pan ◽  
William C. Wright ◽  
Richard H. Chapple ◽  
Asif Zubair ◽  
Manbir Sandhu ◽  
...  

AbstractSurvival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity—often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.


Author(s):  
Jason R. Swedlow ◽  
Neil Osheroff ◽  
Tim Karr ◽  
John W. Sedat ◽  
David A. Agard

DNA topoisomerase II is an ATP-dependent double-stranded DNA strand-passing enzyme that is necessary for full condensation of chromosomes and for complete segregation of sister chromatids at mitosis in vivo and in vitro. Biochemical characterization of chromosomes or nuclei after extraction with high-salt or detergents and DNAse treatment showed that topoisomerase II was a major component of this remnant, termed the chromosome scaffold. The scaffold has been hypothesized to be the structural backbone of the chromosome, so the localization of topoisomerase II to die scaffold suggested that the enzyme might play a structural role in the chromosome. However, topoisomerase II has not been studied in nuclei or chromosomes in vivo. We have monitored the chromosomal distribution of topoisomerase II in vivo during mitosis in the Drosophila embryo. This embryo forms a multi-nucleated syncytial blastoderm early in its developmental cycle. During this time, the embryonic nuclei synchronously progress through 13 mitotic cycles, so this is an ideal system to follow nuclear and chromosomal dynamics.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1503
Author(s):  
Carla Guijarro-Real ◽  
Mariola Plazas ◽  
Adrián Rodríguez-Burruezo ◽  
Jaime Prohens ◽  
Ana Fita

Antiviral treatments inhibiting Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication may represent a strategy complementary to vaccination to fight the ongoing Coronavirus disease 19 (COVID-19) pandemic. Molecules or extracts inhibiting the SARS-CoV-2 chymotripsin-like protease (3CLPro) could contribute to reducing or suppressing SARS-CoV-2 replication. Using a targeted approach, we identified 17 plant products that are included in current and traditional cuisines as promising inhibitors of SARS-CoV-2 3CLPro activity. Methanolic extracts were evaluated in vitro for inhibition of SARS-CoV-2 3CLPro activity using a quenched fluorescence resonance energy transfer (FRET) assay. Extracts from turmeric (Curcuma longa) rhizomes, mustard (Brassica nigra) seeds, and wall rocket (Diplotaxis erucoides subsp. erucoides) at 500 µg mL−1 displayed significant inhibition of the 3CLPro activity, resulting in residual protease activities of 0.0%, 9.4%, and 14.9%, respectively. Using different extract concentrations, an IC50 value of 15.74 µg mL−1 was calculated for turmeric extract. Commercial curcumin inhibited the 3CLPro activity, but did not fully account for the inhibitory effect of turmeric rhizomes extracts, suggesting that other components of the turmeric extract must also play a main role in inhibiting the 3CLPro activity. Sinigrin, a major glucosinolate present in mustard seeds and wall rocket, did not have relevant 3CLPro inhibitory activity; however, its hydrolysis product allyl isothiocyanate had an IC50 value of 41.43 µg mL−1. The current study identifies plant extracts and molecules that can be of interest in the search for treatments against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials.


Author(s):  
Liqing Jia ◽  
Xiaolu Ge ◽  
Chao Du ◽  
Linna Chen ◽  
Yanhong Zhou ◽  
...  

Abstract Background Eukaryotic protein translation elongation factor 1α2 (EEF1A2) is an oncogene that promotes the progression of breast and pancreatic cancer. In this study, we aimed to elucidate the oncogenic function of EEF1A2 in the metastasis of lung adenocarcinoma (LUAD). Methods Immunohistochemistry and western blot were used to study EEF1A2 expression levels in LUAD tissues and cells, respectively. The role of EEF1A2 in LUAD progression were investigated in vitro and in vivo. We identified potential EEF1A2-binding proteins by liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. Protein–protein interactions were determined by immunofluorescence and co-immunoprecipitation (Co-IP). Results In this study, we report that EEF1A2 mediates the epithelial–mesenchymal transformation (EMT), to promote the metastasis of LUAD cells in vitro and in vivo. Moreover, EEF1A2 interacts with HSP90AB1 to increase TGFβ Receptor (TβR)-I, and TβRII expression, followed by enhanced SMAD3 and pSMAD3 expression and nuclear localisation, which promotes the EMT of LUAD cells. Overexpression of EEF1A2 in cancer tissues is associated with poor prognosis and short survival of patients with LUAD. Conclusions These findings underscore the molecular functions of EEF1A2 in LUAD metastasis and indicate that EEF1A2 represents a promising target in the treatment of aggressive LUAD.


1994 ◽  
Vol 14 (5) ◽  
pp. 3197-3207
Author(s):  
P R Caron ◽  
P Watt ◽  
J C Wang

A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results.


2018 ◽  
Vol 19 (11) ◽  
pp. 3332 ◽  
Author(s):  
Barbara Siegenthaler ◽  
Chafik Ghayor ◽  
Bebeka Gjoksi-Cosandey ◽  
Nisarat Ruangsawasdi ◽  
Franz Weber

(1) Background: In an adult skeleton, bone is constantly renewed in a cycle of bone resorption, followed by bone formation. This coupling process, called bone remodeling, adjusts the quality and quantity of bone to the local needs. It is generally accepted that osteoporosis develops when bone resorption surpasses bone formation. Osteoclasts and osteoblasts, bone resorbing and bone forming cells respectively, are the major target in osteoporosis treatment. Inside bone and forming a complex network, the third and most abundant cells, the osteocytes, have long remained a mystery. Osteocytes are responsible for mechano-sensation and -transduction. Increased expression of the osteocyte-derived bone inhibitor sclerostin has been linked to estrogen deficiency-induced osteoporosis and is therefore a promising target for osteoporosis management. (2) Methods: Recently we showed in vitro and in vivo that NMP (N-Methyl-2-pyrrolidone) is a bioactive drug enhancing the BMP-2 (Bone Morphogenetic Protein 2) induced effect on bone formation while blocking bone resorption. Here we tested the effect of NMP on the expression of osteocyte-derived sclerostin. (3) Results: We found that NMP significantly decreased sclerostin mRNA and protein levels. In an animal model of osteoporosis, NMP prevented the estrogen deficiency-induced increased expression of sclerostin. (4) Conclusions: These results support the potential of NMP as a novel therapeutic compound for osteoporosis management, since it preserves bone by a direct interference with osteoblasts and osteoclasts and an indirect one via a decrease in sclerostin expression by osteocytes.


Sign in / Sign up

Export Citation Format

Share Document