Interactions of dendrimers with biological drug targets: reality or mystery – a gap in drug delivery and development research

2016 ◽  
Vol 4 (7) ◽  
pp. 1032-1050 ◽  
Author(s):  
Shaimaa Ahmed ◽  
Suresh B. Vepuri ◽  
Rahul S. Kalhapure ◽  
Thirumala Govender

Molecular/Material modelling is essential for understanding dendrimer–target interactions and brings a new dimension to dendrimers' research in therapeutics.

Author(s):  
Qingqing Xiao ◽  
Xiaotong Li ◽  
Yi Li ◽  
Zhenfeng Wu ◽  
Chenjie Xu ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1742 ◽  
Author(s):  
Olga Cegielska ◽  
Paweł Sajkiewicz

Each year, new glaucoma drug delivery systems are developed. Due to the chronic nature of the disease, it requires the inconvenient daily administration of medications. As a result of their elution from the eye surface and penetration to the bloodstream through undesired permeation routes, the bioavailability of active compounds is low, and systemic side effects occur. Despite numerous publications on glaucoma drug carriers of controlled drug release kinetics, only part of them consider drug permeation routes and, thus, carriers’ location, as an important factor affecting drug delivery. In this paper, we try to demonstrate the importance of the delivery proximal to glaucoma drug targets. The targeted delivery can significantly improve drug bioavailability, reduce side effects, and increase patients’ compliance compared to both commercial and scientifically developed formulations that can spread over the eye surface or stay in contact with conjunctival sac. We present a selection of glaucoma drug carriers intended to be placed on cornea or injected into the aqueous humor and that have been made by advanced materials using hi-tech forming methods, allowing for effective and convenient sustained antiglaucoma drug delivery.


Neurosurgery ◽  
2015 ◽  
Vol 78 (4) ◽  
pp. E596-E600 ◽  
Author(s):  
Makoto Nakamura ◽  
Amir Samii ◽  
Josef M. Lang ◽  
Friedrich Götz ◽  
Madjid Samii ◽  
...  

Abstract BACKGROUND AND IMPORTANCE: Local biological drug delivery in the brain is an innovative field of medicine that developed rapidly in recent years. Our report illustrates a unique case of de novo development of a cerebral arteriovenous malformation (AVM) after implantation of genetically modified allogeneic mesenchymal stem cells in the brain. CLINICAL PRESENTATION: A 50-year-old man was included in a prospective clinical study (study ID number CM GLP-1/01, 2007-004516-31) investigating a novel neuroprotective approach in stroke patients to prevent perihematomal neuronal damage. In this study, alginate microcapsules containing genetically modified allogeneic mesenchymal stem cells producing the neuroprotective glucagon-like peptide-1 (GLP-1) were implanted. Three years later, the patient presented with aphasia and a focal seizure due to a new left frontal intracerebral hemorrhage. Angiography revealed a de novo left frontal AVM. CONCLUSION: The development of an AVM within a period of 3 years after implantation of the glucagon-like peptide-1–secreting mesenchymal stem cells suggests a possible relationship. This case exemplifies that further investigations are necessary to assess the safety of genetically modified cell lines for local biological drug delivery in the brain.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sumel Ashique ◽  
Navjot Kaur Sandhu ◽  
Viney Chawla ◽  
Pooja A Chawla

Background: Due to various limitations in conventional drug delivery system, it is important to focus on the target-specific drug delivery system where we can deliver the drug without any degradation. Among various challenges faced by a formulation scientist, delivering the drug to its right site, in its right dose, is also an important aim. A focused drug transport aims to extend, localize, target and have a safe drug interaction with the diseased tissue. Objective: The aim of targeted drug delivery is to make the required amount of the drug available at its desired site of action. Drug targeting can be accomplished in a number ways that include enzyme mediation, pH-dependent release, use of special vehicles, receptor targeting among other mechanisms. Intelligently designed targeted drug delivery systems also offer the advantages of a low dose of the drug along with reduced side effects which ultimately improves patient compliance. Incidences of dose dumping and dosage form failure are negligible. A focused drug transport aims to have a safe drug interaction with the diseased tissue. Conclusion: This review focuses on the available targeting techniques for delivery to the colon, brain and other sites of interest. Overall, the article should make an excellent read for the researchers in this area. Newer drug targets may be identified and exploited for successful drug targeting.


2019 ◽  
Vol 11 (13) ◽  
pp. 1659-1667 ◽  
Author(s):  
Shiyu Huang ◽  
Gangliang Huang

Dextran has become a hot research topic in drug vehicle material because of its biodegradable, nonspecific cell adhesion, resistance to protein adsorption, low price and ease of structural modification. The fate and changes of dextran in vivo are not fully understood. It is helpful to guide the design and modification of dextran drug vehicles to clarify the changes in the morphology, metabolism and function of drug targets. With the deep understanding of dextran and the emergence of new functional dextran derivatives, its application in nanodrug delivery systems will be more and more, clinically applicable delivery systems may also be available.


2021 ◽  
Vol 22 (20) ◽  
pp. 11227
Author(s):  
Jing Miao ◽  
Peng Gao ◽  
Qian Li ◽  
Kaifeng He ◽  
Liwen Zhang ◽  
...  

Chronic hepatitis B (CHB) is an infectious viral disease that is prevalent worldwide. Traditional nucleoside analogues, as well as the novel drug targets against hepatitis B virus (HBV), are associated with certain critical factors that influence the curative effect, such as biological stability and safety, effective drug delivery, and controlled release. Nanoparticle drug delivery systems have significant advantages and have provided a basis for the development of anti-HBV strategies. In this review, we aim to review the advances in nanoparticle drug delivery systems for anti-hepatitis B virus therapy by summarizing the relevant literature. First, we focus on the characteristics of nanoparticle drug delivery systems for anti-HBV therapy. Second, we discuss the nanoparticle delivery systems for anti-HBV nucleoside drugs, gene-based drugs, and vaccines. Lastly, we provide an overview of the prospects for nanoparticle-based anti-HBV agents.


Sign in / Sign up

Export Citation Format

Share Document