Chemical engineering of donor–acceptor liquid crystalline dyads and triads for the controlled nanostructuration of organic semiconductors

CrystEngComm ◽  
2016 ◽  
Vol 18 (25) ◽  
pp. 4787-4798 ◽  
Author(s):  
Yiming Xiao ◽  
Xiaolu Su ◽  
Lydia Sosa-Vargas ◽  
Emmanuelle Lacaze ◽  
Benoît Heinrich ◽  
...  
2014 ◽  
Vol 174 ◽  
pp. 313-339 ◽  
Author(s):  
S. A. Ponomarenko ◽  
Y. N. Luponosov ◽  
J. Min ◽  
A. N. Solodukhin ◽  
N. M. Surin ◽  
...  

This contribution describes recent progress in the design, synthesis and properties of solution-processible star-shaped oligomers and their application in organic photovoltaics. Even though alternative chemistry has been used to design such oligomers, the most successful approach is based on a triphenylamine donor branching center, (oligo)thiophene conjugated spacers and dicyanovinyl acceptor groups. These are mainly amorphous low band-gap organic semiconductors, though crystalline or liquid crystalline ordering can sometimes be realized. It was shown that the solubility, thermal behavior and structure of such molecules in the bulk strongly depend on the presence and position of alkyl groups, as well as on their length. The photovoltaic properties of solution-processed molecules of this type are now approaching 5% which exceeds those of vacuum-sublimed devices. The design rules and future perspectives of this class of organic photovoltaic molecules are discussed.


2019 ◽  
Author(s):  
Alexander Giovannitti ◽  
Reem B. Rashid ◽  
Quentin Thiburce ◽  
Bryan D. Paulsen ◽  
Camila Cendra ◽  
...  

<p>Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side‑products. This is particularly important for bioelectronic devices which are designed to operate in biological systems. While redox‑active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side‑reactions with molecular oxygen during device operation. We show that this electrochemical side reaction yields hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a reactive side‑product, which may be harmful to the local biological environment and may also accelerate device degradation. We report a design strategy for the development of redox-active organic semiconductors based on donor-acceptor copolymers that prevent the formation of H<sub>2</sub>O<sub>2</sub> during device operation. This study elucidates the previously overlooked side-reactions between redox-active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte‑gated devices in application-relevant environments.</p>


ChemInform ◽  
2005 ◽  
Vol 36 (44) ◽  
Author(s):  
Panos Vlachos ◽  
Bassam Mansoor ◽  
Matthew P. Aldred ◽  
Mary O'Neill ◽  
Stephen M. Kelly

Author(s):  
Jenna L Sartucci ◽  
Arindam Maity ◽  
Manikandan Mohanan ◽  
Jeffery A. Bertke ◽  
Miklos Kertesz ◽  
...  

Understanding the doping mechanism in organic semiconductors and generating molecular design rules to control the doping process is crucial to improve the performance of organic electronics. Even though controlling the...


2021 ◽  
Vol 118 (42) ◽  
pp. e2111988118
Author(s):  
Marie E. Fiori ◽  
Kushal Bagchi ◽  
Michael F. Toney ◽  
M. D. Ediger

Glasses prepared by physical vapor deposition (PVD) are anisotropic, and the average molecular orientation can be varied significantly by controlling the deposition conditions. While previous work has characterized the average structure of thick PVD glasses, most experiments are not sensitive to the structure near an underlying substrate or interface. Given the profound influence of the substrate on the growth of crystalline or liquid crystalline materials, an underlying substrate might be expected to substantially alter the structure of a PVD glass, and this near-interface structure is important for the function of organic electronic devices prepared by PVD, such as organic light-emitting diodes. To study molecular packing near buried organic–organic interfaces, we prepare superlattice structures (stacks of 5- or 10-nm layers) of organic semiconductors, Alq3 (Tris-(8-hydroxyquinoline)aluminum) and DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene), using PVD. Superlattice structures significantly increase the fraction of the films near buried interfaces, thereby allowing for quantitative characterization of interfacial packing. Remarkably, both X-ray scattering and spectroscopic ellipsometry indicate that the substrate exerts a negligible influence on PVD glass structure. Thus, the surface equilibration mechanism previously advanced for thick films can successfully describe PVD glass structure even within the first monolayer of deposition on an organic substrate.


2020 ◽  
Vol 25 ◽  
pp. 101364 ◽  
Author(s):  
Gautomi Gogoi ◽  
Labanya Bhattacharya ◽  
Shohidur Rahman ◽  
Neelotpal Sen Sarma ◽  
Sridhar Sahu ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1727 ◽  
Author(s):  
Ji-Hyun Lee ◽  
Armand Perrot ◽  
Masahiro Hiramoto ◽  
Seiichiro Izawa

Clarifying critical differences in free charge generation and recombination processes between inorganic and organic semiconductors is important for developing efficient organic photoconversion devices such as solar cells (SCs) and photodetector. In this study, we analyzed the dependence of doping concentration on the photoconversion process at the organic pn-homojunction interface in a single organic semiconductor using the temperature dependence of J–V characteristics and energy structure measurements. Even though the organic pn-homojunction SC devices were fabricated using a single host material and the doping technique resembling an inorganic pn-homojunction, the charge generation and recombination mechanisms are similar to that of conventional donor/acceptor (D/A) type organic SCs; that is, the charge separation happens from localized exciton and charge transfer (CT) state being separated by the energy offset between adjacent molecules, and the recombination happens from localized charge carrier at two adjacent molecules. The determining factor for photoconversion processes is the localized nature of charges in organic semiconductors. The results demonstrated that controlling the delocalization of the charges is important to realize efficient organic photoconversion devices.


Sign in / Sign up

Export Citation Format

Share Document