scholarly journals Precise control and measurement of solid–liquid interfacial temperature and viscosity using dual-beam femtosecond optical tweezers in the condensed phase

2016 ◽  
Vol 18 (37) ◽  
pp. 25823-25830 ◽  
Author(s):  
Dipankar Mondal ◽  
Paresh Mathur ◽  
Debabrata Goswami

We present a novel method of microrheology based on femtosecond optical tweezers, which in turn enables us to directly measure and controlin situtemperature at microscale volumes at the solid–liquid interface.

1999 ◽  
Vol 39 (7) ◽  
pp. 91-98 ◽  
Author(s):  
Ryan N. Jordan ◽  
Eric P. Nichols ◽  
Alfred B. Cunningham

Bioavailability is herein defined as the accessibility of a substrate by a microorganism. Further, bioavailability is governed by (1) the substrate concentration that the cell membrane “sees,” (i.e., the “directly bioavailable” pool) as well as (2) the rate of mass transfer from potentially bioavailable (e.g., nonaqueous) phases to the directly bioavailable (e.g., aqueous) phase. Mechanisms by which sorbed (bio)surfactants influence these two processes are discussed. We propose the hypothesis that the sorption of (bio)surfactants at the solid-liquid interface is partially responsible for the increased bioavailability of surface-bound nutrients, and offer this as a basis for suggesting the development of engineered in-situ bioremediation technologies that take advantage of low (bio)surfactant concentrations. In addition, other industrial systems where bioavailability phenomena should be considered are addressed.


2020 ◽  
Vol 10 (16) ◽  
pp. 5362-5385
Author(s):  
Leila Negahdar ◽  
Christopher M. A. Parlett ◽  
Mark A. Isaacs ◽  
Andrew M. Beale ◽  
Karen Wilson ◽  
...  

Many industrially important chemical transformations occur at the interface between a solid catalyst and liquid reactants. In situ and operando spectroscopies offer unique insight into the reactivity of such catalytically active solid–liquid interfaces.


1991 ◽  
Vol 237 ◽  
Author(s):  
Richard D. Robinson ◽  
Ioannis N. Miaoulis

ABSTRACTThis paper presents a new experimental method to investigate solid-liquid interface morphologies during Zone-Melting-Recrystallization at lower than the typical processing temperatures. Gallium films were used as a substitute for silicon films. In situ preliminary investigation identified three phenomena typically occurring during ZMR of silicon films: a) Transition from planar to dendritic to cellular morphologies was observed for different processing conditions; b) cell period proved to be dependant on scanning velocity; c) instabilities at the solidification interface at low heating strip temperatures were caused by supercooling and optical property variations as the material changed phase.


2005 ◽  
Vol 16 (1-4) ◽  
pp. 107-110
Author(s):  
A. P. Shpak ◽  
O. P. Fedorov ◽  
E. L. Zhivolub ◽  
Y. J. Bersudskyy ◽  
O. V. Shuleshova

MRS Bulletin ◽  
2008 ◽  
Vol 33 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Hiroyasu Saka ◽  
Takeo Kamino ◽  
Shigeo Ara ◽  
Katsuhiro Sasaki

AbstractTemperature is one of the most important factors affecting the state and behavior of materials. In situ heating transmission electron microscopy (TEM) is a powerful tool for understanding such temperature effects, and recently in situ heating TEM has made significant progress in terms of temperature available and resolution attained. This article briefly describes newly developed specimen-heating holders, which are useful in carrying out in situ heating TEM experiments. It then focuses on three main applications of these specimen holders: solid–solid reactions, solid–liquid reactions (including highresolution observation of a solid–liquid interface, size dependence of the melting temperatures of one-, two- and three-dimensionally reduced systems, size dependence of the contact angle of fine metal liquid, and wetting of Si with liquid Au or Al) and solid–gas reactions. These results illustrate the benefit of in situ heating TEM for providing fundamental information on temperature effects on materials.


Sign in / Sign up

Export Citation Format

Share Document