Monomer zinc phthalocyanine/upconversion nanoparticle coated with hyaluronic acid crosslinked gel as NIR light-activated drug for in vitro photodynamic therapy

2016 ◽  
Vol 45 (38) ◽  
pp. 15170-15179 ◽  
Author(s):  
Lin Zhou ◽  
Enyi Chen ◽  
Weiwei Jin ◽  
Yue Wang ◽  
Jiahong Zhou ◽  
...  

A monomeric phthalocyanine based NIR-triggered cancer target nanosystem was prepared and showed satisfied in vitro anticancer activity.

Tumor Biology ◽  
2017 ◽  
Vol 39 (10) ◽  
pp. 101042831772727 ◽  
Author(s):  
Eric Chekwube Aniogo ◽  
Blassan Plackal Adimuriyil George ◽  
Heidi Abrahamse

2017 ◽  
Vol 44 (1) ◽  
pp. 200-214 ◽  
Author(s):  
Han-Qing Liu ◽  
Ying-Ming Wang ◽  
Wan-Fang Li ◽  
Chao Li ◽  
Zhi-Huan Jiang ◽  
...  

Background/Aims: The aim of this study was to determine the anti-psoriasis effects of α-(8-quinolinoxy) zinc phthalocyanine (ZnPc-F7)-mediated photodynamic therapy (PDT) and to reveal its mechanisms. Methods: HaCaT cells were used to observe the influence of ZnPc-F7-PDT on cell proliferation in vitro. The in vivo anti-psoriasis effects of ZnPc-F7-PDT were evaluated using a mouse vagina model, a propranolol-induced cavy psoriasis model and an imiquimod (IMQ)-induced nude mouse psoriasis model. Flow cytometry was carried out to determine T lymphocyte levels. Western blotting was performed to determine protein expression, and a reverse transcription-polymerase chain reaction test was performed to determine mRNA expression. Results: The results showed that ZnPc-F7-PDT significantly inhibited the proliferation of HaCaT cells in vitro; when the light doses were fixed, changing the irradiation time or output power had little influence on the inhibition rate. ZnPc-F7-PDT significantly inhibited the hyperproliferation of mouse vaginal epithelium induced by diethylstilbestrol and improved propranolol- and IMQ-induced psoriasis-like symptoms. ZnPc-F7-PDT inhibited IMQ-induced splenomegaly and T lymphocyte abnormalities. ZnPc-F7-PDT did not appear to change T lymphocytes in the mouse vagina model. ZnPc-F7-PDT down-regulated the expression of proliferating cell nuclear antigen (PCNA), B-cell lymphoma-2 (Bcl-2), interleukin (IL)-17A mRNA and IL-17F mRNA, and up-regulated the expression of Bax. Conclusion: In conclusion, ZnPc-F7-PDT exhibited therapeutic effects in psoriasis both in vitro and in vivo and is a potential approach in the treatment of psoriasis. Potential mechanisms of these effects included the inhibition of hyperproliferation; regulation of PCNA, Bcl-2, Bax, IL-17A mRNA and IL-17F mRNA expression; and immune regulation.


2021 ◽  
Author(s):  
Chenxi Li ◽  
Rui Liu ◽  
Yurong Song ◽  
Dongjie Zhu ◽  
Liuchunyang Yu ◽  
...  

Abstract Triptolide (TP) as a disease-modifying anti-rheumatic drug (DMARD) is effective on the treatment of rheumatoid arthritis (RA). To alleviate the toxicity and elevate therapeutic specificity, hyaluronic acid (HA) hydrogels load RGD-attached gold nanoshell containing TP are synthesized, which can be used for targeted photothermal-chemo therapy, and imaging of RA in vivo. The hydrogels system composed of thiol and tyramine modified HA conjugates has been applied artificial tissue models of cartilage for studying drug delivery and release properties. After the degradation of HA chains, heat together with drugs can be delivered to the inflammatory joints simultaneously due to the near-infrared resonance (NIR) irradiation of Au nanoshell. RA is a chronic inflamed disease, which is characterized by synovial inflammation of multiple joints, and can be penetrated with NIR light. These intra-articular administrated hybrid hydrogels combined with NIR irradiation can improve clinical arthritic conditions and inflamed joints in collagen-induced arthritis (CIA) mice, which just need a smaller dosage of TP with non-toxicity. Additionally, the TP-Au/HA hybrid hydrogels treatment reduced the invasion and migration of RA fibroblast-like synoviocytes (RA-FLSs) in vitro significantly, through reducing the phosphorylation of mTOR and p70S6K, its substrates, and confirmed that the mTOR pathway was inhibited.


RSC Advances ◽  
2019 ◽  
Vol 9 (14) ◽  
pp. 8056-8064 ◽  
Author(s):  
Xianhe Sun ◽  
Zhang Ji ◽  
Sailing He

Composite nanoparticles of barium titanate and rose Bengal are used to achieve second harmonic generation (SHG) enhanced photodynamic therapy excited by near infrared (NIR) light.


2014 ◽  
Vol 50 (95) ◽  
pp. 14983-14986 ◽  
Author(s):  
Ruizheng Liang ◽  
Lina Ma ◽  
Lele Zhang ◽  
Chunyang Li ◽  
Wendi Liu ◽  
...  

A targeted photosensitizer used in photodynamic therapy (PDT) was fabricated by incorporation of zinc phthalocyanine (ZnPc) and folic acid (FA) into polyvinylpyrrolidone (PVP) micelles, which exhibits excellent anticancer performance revealed by both in vitro studies and in vivo tests.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3080 ◽  
Author(s):  
Shin Jung ◽  
Seunggon Jung ◽  
Doo Man Kim ◽  
Sa-Hoe Lim ◽  
Yong Ho Shim ◽  
...  

The main purpose of this study is to synthesize novel types of nanophotosensitizers that are based on hyperbranched chlorin e6 (Ce6) via disulfide linkages. Moreover, hyperbranched Ce6 was conjugated with hyaluronic acid (HA) for CD44-receptor mediated delivery and redox-sensitive photodynamic therapy (PDT) against cancer cells. Hyperbranched Ce6 was considered to make novel types of macromolecular photosensitizer since most of the previous studies regarding nanophotosensizers are concerned with simple conjugation between monomeric units of photosensitizer and polymer materials. Hyperbranched Ce6 was synthesized by conjugation of Ce6 each other while using disulfide linkage. To synthesize Ce6 tetramer, carboxyl groups of Ce6 were conjugated with cystamine and three equivalents of Ce6 were then conjugated again with the end of amine groups of Ce6-cystamine. To synthesize Ce6 decamer as a hyperbranched Ce6, six equivalents of Ce6 was conjugated with the end of Ce6 tetramer via cystamine linkage. Furthermore, HA-cystamine was attached with Ce6 tetramer or Ce6 decamer to synthesize HA-Ce6 tetramer (Ce6tetraHA) or HA-Ce6 decamer (Ce6decaHA) conjugates. Ce6tetraHA and Ce6decaHA nanophotosensitizers showed small diameters of less than 200 nm. The addition of dithiothreitol (DTT) and hyaluronidase (HAse) induced a faster Ce6 release rate in vitro drug release study, which indicated that Ce6tetraHA nanophotosensitizers possess redox-sensitive and HAse-sensitive release properties. Ce6tetraHA nanophotosensitizers showed higher intracellular Ce6 accumulation, higher ROS generation, and higher PDT efficacy than that of Ce6 alone. Ce6tetraHA nanophotosensitizers responded to the CD44 receptor of cancer cell surface, i.e., the pre-treatment of HA blocked CD44 receptor of U87MG or HCT116 cells and then inhibited delivery of nanophotosensitizers in vitro cell culture study. Furthermore, in vivo tumorxenograft study showed that fluorescence intensity in the tumor tissues was stronger than those of other organs, while CD44 receptor blocking by HA pretreatment induced a decrease of fluorescence intensity in tumor tissues when compared to liver. These results indicated that Ce6tetraHA nanophotosensitizers delivered to tumors by redox-sensitive and CD44-sensitive manner.


Sign in / Sign up

Export Citation Format

Share Document