Gotta catch ‘em all: the microscale quest to understand cancer biology

2016 ◽  
Vol 8 (12) ◽  
pp. 1203-1207 ◽  
Author(s):  
Zhenwei Ma ◽  
Christopher Moraes

We highlight recent advances in the innovative use of microscale engineered technologies to gain new insight into the integrative biophysical mechanisms that drive cancer initiation and progression.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 892 ◽  
Author(s):  
Claire Vennin ◽  
David Herrmann ◽  
Morghan C. Lucas ◽  
Paul Timpson

Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2557 ◽  
Author(s):  
Seo Lee ◽  
Jae Kang ◽  
Dokyoung Kim

Porous silicon has been utilized within a wide spectrum of industries, as well as being used in basic research for engineering and biomedical fields. Recently, surface modification methods have been constantly coming under the spotlight, mostly in regard to maximizing its purpose of use. Within this review, we will introduce porous silicon, the experimentation preparatory methods, the properties of the surface of porous silicon, and both more conventional as well as newly developed surface modification methods that have assisted in attempting to overcome the many drawbacks we see in the existing methods. The main aim of this review is to highlight and give useful insight into improving the properties of porous silicon, and create a focused description of the surface modification methods.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4362
Author(s):  
Alessandra Pecora ◽  
Justine Laprise ◽  
Manel Dahmene ◽  
Mélanie Laurin

Skin cancers are the most common cancers worldwide. Among them, melanoma, basal cell carcinoma of the skin and cutaneous squamous cell carcinoma are the three major subtypes. These cancers are characterized by different genetic perturbations even though they are similarly caused by a lifelong exposure to the sun. The main oncogenic drivers of skin cancer initiation have been known for a while, yet it remains unclear what are the molecular events that mediate their oncogenic functions and that contribute to their progression. Moreover, patients with aggressive skin cancers have been known to develop resistance to currently available treatment, which is urging us to identify new therapeutic opportunities based on a better understanding of skin cancer biology. More recently, the contribution of cytoskeletal dynamics and Rho GTPase signaling networks to the progression of skin cancers has been highlighted by several studies. In this review, we underline the various perturbations in the activity and regulation of Rho GTPase network components that contribute to skin cancer development, and we explore the emerging therapeutic opportunities that are surfacing from these studies.


Author(s):  
Farhan Javaid ◽  
Habib Pouriayevali ◽  
Karsten Durst

Abstract To comprehend the mechanical behavior of a polycrystalline material, an in-depth analysis of individual grain boundary (GB) and dislocation interactions is of prime importance. In the past decade, nanoindentation emerged as a powerful tool to study the local mechanical response in the vicinity of the GB. The improved instrumentation and test protocols allow to capture various GB–dislocation interactions during the nanoindentation in the form of strain bursts on the load–displacement curve. Moreover, the interaction of the plastic zone with the GB provides important insight into the dislocation transmission effects of distinct grain boundaries. Of great importance for the analysis and interpretation of the observed effects are microstructural investigations and computational approaches. This review paper focused on recent advances in the dislocation–GB interactions and underlying mechanisms studied via nanoindentation, which includes GB pop-in phenomenon, localized grain movement under ambient conditions, and an analysis of the slip transfer mechanism using theoretical treatments and simulations. Graphical abstract


Author(s):  
Gopala Krishna Ganta ◽  
Rama Krishna Alla ◽  
Kamala Cheruvu ◽  
Bharathi Ram Guduri

Bone grafts are often used to retrieve the lost bone in the most acceptable, technical and skilful manner that enables to restore the form and function of the bone. Numerous bone graft materials have been developed to fill and/or remodel the bony defects. Though, autografts were considered to be the gold standard among the grafts available; they have got some inherent disadvantages. The current research is more focused on allografts, which addressed the problems associated with autografts. This article provides an insight into the remodeling process, and various types of bone grafts currently available. Also, the emphasis was given on the recent advances of the bone grafts.


2021 ◽  

Explore a thorough and up to date overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application. The balance among various renewable and combustion technologies are surveyed, and numerical and experimental tools are discussed along with recent advances. Covers combustion of gaseous, liquid and solid fuels and subsonic and supersonic flows. This detailed insight into the turbulence-combustion coupling with turbulence and other physical aspects, shared by a number of the world leading experts in the field, makes this an excellent reference for graduate students, researchers and practitioners in the field.


Author(s):  
COLIN RENFREW

This chapter discusses the attempts of pinpointing the origins of humans, i.e. Homo sapiens sapiens. Due to the recent advances in archaeology, specifically in archaeogenetics, it has been determined that the Homo sapiens sapiens originated in Africa 200,000 years ago, and that the speciation phase of human development occurred before that time. The chapter shows that cognitive archaeology would need to analyse more carefully the nature of mind, as well as seek further insight into the processes that underlie the achievements that characterise those different trajectories of development and change.


2017 ◽  
Author(s):  
Abicumaran Uthamacumaran

Cancer is the co-evolution of cancer cells and their turbulent microenvironment, characterized by dynamical hyper-chaotic gene expression profiles. However, cancers should not be viewed as the result of random mutations and malfunctioning information processing systems. Rather, it is the selective advantages conferred by adaptive evolution of cellular biosystems. Although on a systemic scale, cancer is defined as a disease, on a cellular basis they outperform healthy (non-transformed cells) in terms of survival and reproductive success. Their enhanced longevity pathways, metastatic invasion, extended telomeres, dynamical morphogenesis, regenerative stem cell division and environment-specific metabolic cascades indicate they are adaptive evolutionary cell states that have surpassed the boundaries normal cells are confined to. Therefore, the paper presents a brief summary of currently existing classical cancer models in the field of mathematical biology and the misconceptions of cancer epimetabolomes to further advance cancer research beyond its current limits. Through an insight into the mathematical behaviors of cancer cells, a quantum adaptive epigenetic landscape is proposed to explain the selective evolutionary dominance of cancer cells.


Sign in / Sign up

Export Citation Format

Share Document