Graphene–polyglycerol–curcumin hybrid as a near-infrared (NIR) laser stimuli-responsive system for chemo-photothermal cancer therapy

RSC Advances ◽  
2016 ◽  
Vol 6 (66) ◽  
pp. 61141-61149 ◽  
Author(s):  
Farhad Bani ◽  
Mohsen Adeli ◽  
Soodabeh Movahedi ◽  
Majid Sadeghizadeh

The aim of this study is to develop a nano graphene–polyglycerol–curcumin hybrid capable of simultaneous co-delivery of chemotherapeutic drug and cytotoxic heat to cancer cells by near infrared (NIR) laser irradiation.

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1286 ◽  
Author(s):  
Lee ◽  
Jung ◽  
Jo ◽  
Yang ◽  
Koh ◽  
...  

Abstract: Photothermal therapy (PTT) using a near-infrared (NIR) heptamethine cyanine fluorophore has emerged as an alternative strategy for targeted cancer therapy. NIR fluorophores showing a high molar extinction coefficient and low fluorescence quantum yield have considerable potential applications in photothermal cancer therapy. In this study, a bifunctional sorbitol–ZW800 conjugate was used as an advanced concept of photothermal therapeutic agents for in vivo cancer imaging and therapy owing to the high tumor targetability of the sorbitol moiety and excellent photothermal property of NIR heptamethine cyanine fluorophore. The sorbitol–ZW800 showed an excellent photothermal effect increased by 58.7 °C after NIR laser irradiation (1.1 W/cm2) for 5 min. The HT-29 tumors targeted by sorbitol–ZW800 showed a significant decrease in tumor volumes for 7 days after photothermal treatment. Therefore, combining the bifunctional sorbitol–ZW800 conjugate and NIR laser irradiation is an alternative way for targeted cancer therapy, and this approach holds great promise as a safe and highly efficient NIR photothermal agent for future clinical applications.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 476 ◽  
Author(s):  
Gayoung Jo ◽  
Bo Young Lee ◽  
Eun Jeong Kim ◽  
Min Ho Park ◽  
Hoon Hyun

A feasible and biocompatible supramolecular complex self-assembled from indocyanine green (ICG) and methyl-β-cyclodextrin (Mβ-CD) was developed for targeted cancer imaging, which enhanced fluorescence-guided photothermal cancer therapy. This study confirmed that the formation of an inclusion complex of the heterocyclic ICG moiety and Mβ-CD inner cavity could result in improved tumor targetability compared with free ICG. The ICG-CD complex could be used as a bifunctional phototherapeutic agent for targeted cancer phototherapy due to the high tumor targetability of the Mβ-CD moiety and effective photothermal performance of the near-infrared (NIR) ICG moiety. Upon NIR laser irradiation, the photothermal effect exerted by the ICG-CD complex significantly enhanced the temperature at the tumor site by 56.2 °C within 5 min. Targeting HT-29 tumors using the ICG-CD complex resulted in an apparent reduction in tumor volumes over the 9 days after photothermal treatment. Moreover, no tumor recurrence or body weight loss were observed after administering a single dose of ICG-CD complex with NIR laser irradiation. Therefore, the administration of the biocompatible ICG-CD complex in combination with NIR laser treatment can be safely explored as a potential strategy for future clinical applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Bing Liu ◽  
Jian Zhou ◽  
Bin Zhang ◽  
Jing Qu

Photothermal therapy is a promising approach for cancer treatment. In our study, we investigate the photothermal effect of different concentrations of the Ag@Fe3O4 nanoparticles on apoptosis and proliferation in the human epithelial ovarian cancer cells SKOV3. Ovarian cancer cells SKOV3 were treated with the Ag@Fe3O4 nanoparticles under an 808 nm near-infrared (NIR) laser irradiation at different concentrations. The cell proliferation was measured by the cell counting kit-8 (CCK-8) assay. The results show that the Ag@Fe3O4 nanoparticles with NIR laser irradiation could markedly inhibit the proliferation of the ovarian cancer cells SKOV3 independent of a concentration-time manner. Meanwhile, the cell morphology was also seriously damaged under the treatment of high-concentration nanoparticles. However, Ag@Fe3O4 nanoparticles have almost no obvious effect on the growth of SKOV3 cells without NIR laser illumination treatment. Therefore, it is reasonable to believe that the Ag@Fe3O4 nanoparticles have promising applications in photothermal treatment of cancer cells.


RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21590-21599 ◽  
Author(s):  
Ruichan Lv ◽  
Chongna Zhong ◽  
Arif Kuhan Gulzar ◽  
Fei He ◽  
Rui Gu ◽  
...  

Yolk/shell mesoporous NaYF4:Yb,Er@MgSiO3–ZnPc–RGD spheres have been fabricated to combine photodynamic therapy (PDT) and bio-imaging for improved antitumor efficacy under NIR laser irradiation.


2019 ◽  
Vol 7 (14) ◽  
pp. 2247-2251 ◽  
Author(s):  
Lu Li ◽  
Qingzhu Yang ◽  
Lei Shi ◽  
Nannan Zheng ◽  
Zeyu Li ◽  
...  

Novel phthalocyanine molecule 4OCSPC with deep NIR absorbance showed excellent photothermal therapy property for cancer cells.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Ha Hee Shin ◽  
Hyung Woo Choi ◽  
Jae Hyun Lim ◽  
Ji Woon Kim ◽  
Bong Geun Chung

AbstractThe combination therapy based on multifunctional nanocomposites has been considered as a promising approach to improve cancer therapeutic efficacy. Herein, we report targeted multi-functional poly(N-isopropylacrylamide) (PNIPAM)-based nanocomposites for synergistic chemo-photothermal therapy toward breast cancer cells. To increase the transition temperature, acrylic acid (AAc) was added in synthetic process of PNIPAM, showing that the intrinsic lower critical solution temperature was changed to 42 °C . To generate the photothermal effect under near-infrared (NIR) laser irradiation (808 nm), polypyrrole (ppy) nanoparticles were uniformly decorated in PNIPAM-AAc. Folic acid (FA), as a cancer targeting ligand, was successfully conjugated on the surplus carboxyl groups in PNIPAM network. The drug release of PNIPAM-ppy-FA nanocomposites was efficiently triggered in response to the temperature change by NIR laser irradiation. We also confirmed that PNIPAM-ppy-FA was internalized to MDA-MB-231 breast cancer cells by folate-receptor-mediated endocytosis and significantly enhanced cancer therapeutic efficacy with combination treatment of chemo-photothermal effects. Therefore, our work encourages further exploration of multi-functional nanocarrier agents for synergistic therapeutic approaches to different types of cancer cells.


2017 ◽  
Vol 5 (35) ◽  
pp. 7393-7402 ◽  
Author(s):  
Kang Dou ◽  
Wenwen Zhu ◽  
Yousheng Zou ◽  
Yu Gu ◽  
Jubin Li ◽  
...  

The synthesized MoO2 nanocrystals exhibit excellent photothermal temperature elevation of about 37.5 °C under 808 nm laser irradiation, and tumor inhibition effects with an inhibition rate of up to 80.45% as a photothermal therapy agent against 4T1 cancer cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoxia Song ◽  
Zhi Chen ◽  
Xue Zhang ◽  
Junfeng Xiong ◽  
Teng Jiang ◽  
...  

AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3061
Author(s):  
Natalia Krasteva ◽  
Dessislava Staneva ◽  
Bela Vasileva ◽  
George Miloshev ◽  
Milena Georgieva

Central focus in modern anticancer nanosystems is given to certain types of nanomaterials such as graphene oxide (GO). Its functionalization with polyethylene glycol (PEG) demonstrates high delivery efficiency and controllable release of proteins, bioimaging agents, chemotherapeutics and anticancer drugs. GO–PEG has a good biological safety profile, exhibits high NIR absorbance and capacity in photothermal treatment. To investigate the bioactivity of PEGylated GO NPs in combination with NIR irradiation on colorectal cancer cells we conducted experiments that aim to reveal the molecular mechanisms of action of this nanocarrier, combined with near-infrared light (NIR) on the high invasive Colon26 and the low invasive HT29 colon cancer cell lines. During reaching cancer cells the phototoxicity of GO–PEG is modulated by NIR laser irradiation. We observed that PEGylation of GO nanoparticles has well-pronounced biocompatibility toward colorectal carcinoma cells, besides their different malignant potential and treatment times. This biocompatibility is potentiated when GO–PEG treatment is combined with NIR irradiation, especially for cells cultured and treated for 24 h. The tested bioactivity of GO–PEG in combination with NIR irradiation induced little to no damages in DNA and did not influence the mitochondrial activity. Our findings demonstrate the potential of GO–PEG-based photoactivity as a nanosystem for colorectal cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document