Extrusion printing of a designed three-dimensional YBa2Cu3O7−x superconductor with milled precursor powder

2017 ◽  
Vol 5 (13) ◽  
pp. 3382-3389 ◽  
Author(s):  
Xiangxia Wei ◽  
Erwin Peng ◽  
Yanyou Xie ◽  
Junmin Xue ◽  
John Wang ◽  
...  

Designed milled YBCO hollow structures with high density, good mechanical properties and enhanced magnetization can prolong levitation time over magnets.

2021 ◽  
pp. 109963622110305
Author(s):  
Youming Chen ◽  
Raj Das

In this work, polymeric foam thermoforming, foam injection moulding, bead foaming and film foaming were reviewed in an effort to explore feasible processes to manufacture sandwich structures of complex geometry for automotive applications. Injection moulded foams generally suffer from high density, poor cell morphologies and unnecessary skin layers. Foamable films currently available are pressure-induced. In order for foamable films to produce foam, high uniformly-distributed pressure needs to be applied, which makes it difficult to manufacture foam parts of three-dimensional complex geometry with foamable films. The majority of commercial high-performance foam cores can be thermoformed. Ideally, thermoformed foam cores would have good mechanical properties if high-performance foam sheets are used. However, the mechanical properties of foams might be reduced during the process of thermoforming, especially around corners. Bead foaming offers a high level of freedom in foam geometry to be moulded, and inserts can be integrated into foam cores during the process of moulding. Moreover, foam cores with high density in high stressed areas and low density in low stressed areas can be manufactured with foam beads of different densities. However, due to nonhomogeneous degree of fusion and weak bonds and voids between beads, bead foams generally show mechanical properties lower than their block counterpart. Relatively speaking, thermoforming with high-performance foam sheets and moulding with high-performance foam beads hold great potentials for mass production of sandwich cores of complex geometry for automotive applications. However, further investigation on the mechanical properties of thermoformed foams and high-performance bead foams is still in need to confirm their suitability.


2013 ◽  
Vol 773-774 ◽  
pp. 496-502 ◽  
Author(s):  
Sepidar Sayyar ◽  
Rhys Cornock ◽  
Eoin Murray ◽  
Stephen Beirne ◽  
David L. Officer ◽  
...  

In this work fibres and complex three-dimensional scaffolds of a covalently linked graphene-polycaprolactone composite were successfully extruded and printed using a melt extrusion printing system. Fibres with varying diameters and morphologies, as well as complex scaffolds were fabricated using an additive fabrication approach and were characterized. It was found that the addition of graphene improves the mechanical properties of the fibres by over 50% and in vitro cytotoxicity tests showed good biocompatibility indicating a promising material for tissue engineering applications.


2019 ◽  
Vol 14 (8) ◽  
pp. 828-830 ◽  
Author(s):  
Weihua Meng ◽  
Weihong Wu ◽  
Weiwei Zhang ◽  
Luyao Cheng ◽  
Yunhong Jiao ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3391
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ewa Olewnik-Kruszkowska ◽  
Katarzyna Reczyńska ◽  
Elżbieta Pamuła

The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1217
Author(s):  
Jang Ho Ha ◽  
Jae Hyun Lim ◽  
Ji Woon Kim ◽  
Hyeon-Yeol Cho ◽  
Seok Geun Jo ◽  
...  

Blended hydrogels play an important role in enhancing the properties (e.g., mechanical properties and conductivity) of hydrogels. In this study, we generated a conductive blended hydrogel, which was achieved by mixing gelatin methacrylate (GelMA) with collagen, and silver nanowire (AgNW). The ratio of GelMA, collagen and AgNW was optimized and was subsequently gelated by ultraviolet light (UV) and heat. The scanning electron microscope (SEM) image of the conductive blended hydrogels showed that collagen and AgNW were present in the GelMA hydrogel. Additionally, rheological analysis indicated that the mechanical properties of the conductive GelMA–collagen–AgNW blended hydrogels improved. Biocompatibility analysis confirmed that the human umbilical vein endothelial cells (HUVECs) encapsulated within the three-dimensional (3D), conductive blended hydrogels were highly viable. Furthermore, we confirmed that the molecule in the conductive blended hydrogel was released by electrical stimuli-mediated structural deformation. Therefore, this conductive GelMA–collagen–AgNW blended hydrogel could be potentially used as a smart actuator for drug delivery applications.


Sign in / Sign up

Export Citation Format

Share Document