scholarly journals Optical reconfiguration and polarization control in semi-continuous gold films close to the percolation threshold

Nanoscale ◽  
2017 ◽  
Vol 9 (33) ◽  
pp. 12014-12024 ◽  
Author(s):  
Christian Frydendahl ◽  
Taavi Repän ◽  
Mathias Geisler ◽  
Sergey M. Novikov ◽  
Jonas Beermann ◽  
...  

fs-Laser pulses can be used to locally alter the morphology and optical properties of semi-continuous metal films in a simple laser writing process.

1990 ◽  
Vol 195 ◽  
Author(s):  
Y. Yagil ◽  
M. Yosefin ◽  
D. J. Bergman ◽  
G. Deutscher

ABSTRACTWe present a calculation of the optical properties of thin semi-continuous metal films near the percolative metal-insulator transition. The model is based on scaling assumptions, reflecting the fractal nature of these films. The film is divided into small squares of linear size L and the local complex conductivity of each square is calculated, using finite size scaling arguments and taking into account both ohmic resistance within the metallic clusters and intercluster capacitance. The size L, over which the finite size scaling is done, is related to the optical frequency by the anomalous diffusion relation, i.e. L(ω) α ωl/(2+θ). In this calculation two types of conductivities are found : good ones for the ‘metallic’ squares, showing that large clusters are present within these squares, and poor conductivities for ‘dielectric’ squares, where only small clusters are present. Moreover, the ‘metallic’ and ‘dielectric’ squares are not identical, thus a certain distribution of each type has to be considered. The width of the distribution is quite large close to the percolation threshold and decreases to zero when the film becomes homogeneous. The optical properties of the whole sample are obtained by summing the contribution from all squares, using a wide bimodal distribution function. Comparison with recent experimental results shows good agreement between this model and the experimental data.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5761
Author(s):  
Marco Girolami ◽  
Alessandro Bellucci ◽  
Matteo Mastellone ◽  
Stefano Orlando ◽  
Valerio Serpente ◽  
...  

Irradiation of diamond with femtosecond (fs) laser pulses in ultra-high vacuum (UHV) conditions results in the formation of surface periodic nanostructures able to strongly interact with visible and infrared light. As a result, native transparent diamond turns into a completely different material, namely “black” diamond, with outstanding absorptance properties in the solar radiation wavelength range, which can be efficiently exploited in innovative solar energy converters. Of course, even if extremely effective, the use of UHV strongly complicates the fabrication process. In this work, in order to pave the way to an easier and more cost-effective manufacturing workflow of black diamond, we demonstrate that it is possible to ensure the same optical properties as those of UHV-fabricated films by performing an fs-laser nanostructuring at ambient conditions (i.e., room temperature and atmospheric pressure) under a constant He flow, as inferred from the combined use of scanning electron microscopy, Raman spectroscopy, and spectrophotometry analysis. Conversely, if the laser treatment is performed under a compressed air flow, or a N2 flow, the optical properties of black diamond films are not comparable to those of their UHV-fabricated counterparts.


Author(s):  
Klaus-Ruediger Peters ◽  
Samuel A. Green

High magnification imaging of macromolecules on metal coated biological specimens is limited only by wet preparation procedures since recently obtained instrumental resolution allows visualization of topographic structures as smal l as 1-2 nm. Details of such dimensions may be visualized if continuous metal films with a thickness of 2 nm or less are applied. Such thin films give sufficient contrast in TEM as well as in SEM (SE-I image mode). The requisite increase in electrical conductivity for SEM of biological specimens is achieved through the use of ligand mediated wet osmiuum impregnation of the specimen before critical point (CP) drying. A commonly used ligand is thiocarbohvdrazide (TCH), first introduced to TEM for en block staining of lipids and glvcomacromolecules with osmium black. Now TCH is also used for SEM. However, after ligand mediated osinification nonspecific osmium black precipitates were often found obscuring surface details with large diffuse aggregates or with dense particular deposits, 2-20 nm in size. Thus, only low magnification work was considered possible after TCH appl ication.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Ruchkina ◽  
Dina Hot ◽  
Pengji Ding ◽  
Ali Hosseinnia ◽  
Per-Erik Bengtsson ◽  
...  

AbstractLaser-induced grating spectroscopy (LIGS) is for the first time explored in a configuration based on the crossing of two focused femtosecond (fs) laser pulses (800-nm wavelength) and a focused continuous-wave (cw) laser beam (532-nm wavelength). A thermal grating was formed by multi-photon absorption of the fs-laser pulses by $$\hbox {N}_{{2}}$$ N 2 with a pulse energy around 700 $$\upmu $$ μ J ($$\sim $$ ∼ 45 TW/$$\hbox {cm}^{2}$$ cm 2 ). The feasibility of this LIGS configuration was investigated for thermometry in heated nitrogen gas flows. The temperature was varied from room temperature up to 750 K, producing strong single-shot LIGS signals. A model based on the solution of the linearized hydrodynamic equations was used to extract temperature information from single-shot experimental data, and the results show excellent agreement with the thermocouple measurements. Furthermore, the fluorescence produced by the fs-laser pulses was investigated. This study indicates an 8-photon absorption pathway for $$\hbox {N}_{{2}}$$ N 2 in order to reach the $$\hbox {B}^{3}\Pi _{g}$$ B 3 Π g state from the ground state, and 8 + 5 photon excitation to reach the $$\hbox {B}^{2}\Sigma _{u}^{+}$$ B 2 Σ u + state of the $$\hbox {N}_{2}^{+}$$ N 2 + ion. At pulse energies higher than 1 mJ, the LIGS signal was disturbed due to the generation of plasma. Additionally, measurements in argon gas and air were performed, where the LIGS signal for argon shows lower intensity compared to air and $$\hbox {N}_{{2}}$$ N 2 .


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


2011 ◽  
Vol 1319 ◽  
Author(s):  
Michael J. Abere ◽  
Ryan D. Murphy ◽  
Bianca Jackson ◽  
Gerard Mourou ◽  
Michel Menu ◽  
...  

ABSTRACTAn ultrafast laser irradiation method for the removal of corrosion from Daguerreotypes without detrimentally affecting image quality has been developed. Corrosion products such as silver oxide and silver sulfide may be removed by chemical cleaning but these reactions are hard to control and are often damaging to the underlying silver, ruining the image. The Ti:Sapphire 150 fs laser pulses used in this study are focused to a beam diameter of 60 μm and are normally incident to the Daguerreotype. It was found that the corrosion layer has a lower material removal threshold than silver allowing for removal of corrosion with minimal removal of vital information contained in the silver substrate.


Sign in / Sign up

Export Citation Format

Share Document