scholarly journals Self-association of L-periaxin occurs via its acidic domain and NLS2/NLS3, and affects its trafficking in RSC96 cells

RSC Advances ◽  
2017 ◽  
Vol 7 (70) ◽  
pp. 44112-44123 ◽  
Author(s):  
Yenan Yang ◽  
Min Liang ◽  
Yawei Shi

Periaxin (PRX) protein was first identified in myelinating Schwann cells through the screening of cytoskeleton-associated proteins in peripheral nerve myelination.

2006 ◽  
Vol 22 (06) ◽  
Author(s):  
Deborah Yu ◽  
Sherri Wood ◽  
Keri Smith ◽  
Keith Bishop ◽  
Paul Cederna

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1584
Author(s):  
Germán L. Vélez-Reyes ◽  
Nicholas Koes ◽  
Ji Hae Ryu ◽  
Gabriel Kaufmann ◽  
Mariah Berner ◽  
...  

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive, genomically complex, have soft tissue sarcomas, and are derived from the Schwann cell lineage. Patients with neurofibromatosis type 1 syndrome (NF1), an autosomal dominant tumor predisposition syndrome, are at a high risk for MPNSTs, which usually develop from pre-existing benign Schwann cell tumors called plexiform neurofibromas. NF1 is characterized by loss-of-function mutations in the NF1 gene, which encode neurofibromin, a Ras GTPase activating protein (GAP) and negative regulator of RasGTP-dependent signaling. In addition to bi-allelic loss of NF1, other known tumor suppressor genes include TP53, CDKN2A, SUZ12, and EED, all of which are often inactivated in the process of MPNST growth. A sleeping beauty (SB) transposon-based genetic screen for high-grade Schwann cell tumors in mice, and comparative genomics, implicated Wnt/β-catenin, PI3K-AKT-mTOR, and other pathways in MPNST development and progression. We endeavored to more systematically test genes and pathways implicated by our SB screen in mice, i.e., in a human immortalized Schwann cell-based model and a human MPNST cell line, using CRISPR/Cas9 technology. We individually induced loss-of-function mutations in 103 tumor suppressor genes (TSG) and oncogene candidates. We assessed anchorage-independent growth, transwell migration, and for a subset of genes, tumor formation in vivo. When tested in a loss-of-function fashion, about 60% of all TSG candidates resulted in the transformation of immortalized human Schwann cells, whereas 30% of oncogene candidates resulted in growth arrest in a MPNST cell line. Individual loss-of-function mutations in the TAOK1, GDI2, NF1, and APC genes resulted in transformation of immortalized human Schwann cells and tumor formation in a xenograft model. Moreover, the loss of all four of these genes resulted in activation of Hippo/Yes Activated Protein (YAP) signaling. By combining SB transposon mutagenesis and CRISPR/Cas9 screening, we established a useful pipeline for the validation of MPNST pathways and genes. Our results suggest that the functional genetic landscape of human MPNST is complex and implicate the Hippo/YAP pathway in the transformation of neurofibromas. It is thus imperative to functionally validate individual cancer genes and pathways using human cell-based models, to determinate their role in different stages of MPNST development, growth, and/or metastasis.


2010 ◽  
Vol 78 (11) ◽  
pp. 4634-4643 ◽  
Author(s):  
Rosane M. B. Teles ◽  
Stephan R. Krutzik ◽  
Maria T. Ochoa ◽  
Rosane B. Oliveira ◽  
Euzenir N. Sarno ◽  
...  

ABSTRACT The ability of microbial pathogens to target specific cell types is a key aspect of the pathogenesis of infectious disease. Mycobacterium leprae, by infecting Schwann cells, contributes to nerve injury in patients with leprosy. Here, we investigated mechanisms of host-pathogen interaction in the peripheral nerve lesions of leprosy. We found that the expression of the C-type lectin, CD209, known to be expressed on tissue macrophages and to mediate the uptake of M. leprae, was present on Schwann cells, colocalizing with the Schwann cell marker, CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase), along with the M. leprae antigen PGL-1 in the peripheral nerve biopsy specimens. In vitro, human CD209-positive Schwann cells, both from primary cultures and a long-term line, have a higher binding of M. leprae compared to CD209-negative Schwann cells. Interleukin-4, known to be expressed in skin lesions from multibacillary patients, increased CD209 expression on human Schwann cells and subsequent Schwann cell binding to M. leprae, whereas Th1 cytokines did not induce CD209 expression on these cells. Therefore, the regulated expression of CD209 represents a common mechanism by which Schwann cells and macrophages bind and take up M. leprae, contributing to the pathogenesis of leprosy.


2013 ◽  
Vol 119 (3) ◽  
pp. 720-732 ◽  
Author(s):  
Yerko A. Berrocal ◽  
Vania W. Almeida ◽  
Ranjan Gupta ◽  
Allan D. Levi

Object Segmental nerve defects pose a daunting clinical challenge, as peripheral nerve injury studies have established that there is a critical nerve gap length for which the distance cannot be successfully bridged with current techniques. Construction of a neural prosthesis filled with Schwann cells (SCs) could provide an alternative treatment to successfully repair these long segmental gaps in the peripheral nervous system. The object of this study was to evaluate the ability of autologous SCs to increase the length at which segmental nerve defects can be bridged using a collagen tube. Methods The authors studied the use of absorbable collagen conduits in combination with autologous SCs (200,000 cells/μl) to promote axonal growth across a critical size defect (13 mm) in the sciatic nerve of male Fischer rats. Control groups were treated with serum only–filled conduits of reversed sciatic nerve autografts. Animals were assessed for survival of the transplanted SCs as well as the quantity of myelinated axons in the proximal, middle, and distal portions of the channel. Results Schwann cell survival was confirmed at 4 and 16 weeks postsurgery by the presence of prelabeled green fluorescent protein–positive SCs within the regenerated cable. The addition of SCs to the nerve guide significantly enhanced the regeneration of myelinated axons from the nerve stump into the proximal (p < 0.001) and middle points (p < 0.01) of the tube at 4 weeks. The regeneration of myelinated axons at 16 weeks was significantly enhanced throughout the entire length of the nerve guide (p < 0.001) as compared with their number in a serum–only filled tube and was similar in number compared with the reversed autograft. Autotomy scores were significantly lower in the animals whose sciatic nerve was repaired with a collagen conduit either without (p < 0.01) or with SCs (p < 0.001) when compared with a reversed autograft. Conclusions The technique of adding SCs to a guidance channel significantly enhanced the gap distance that can be repaired after peripheral nerve injury with long segmental defects and holds promise in humans. Most importantly, this study represents some of the first essential steps in bringing autologous SC-based therapies to the domain of peripheral nerve injuries with long segmental defects.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1665 ◽  
Author(s):  
Chung-Chia Chen ◽  
Joyce Yu ◽  
Hooi-Yee Ng ◽  
Alvin Lee ◽  
Chien-Chang Chen ◽  
...  

Although autologous nerve grafting remains the gold standard treatment for peripheral nerve injuries, alternative methods such as development of nerve guidance conduits have since emerged and evolved to counter the many disadvantages of nerve grafting. However, the efficacy and viability of current nerve conduits remain unclear in clinical trials. Here, we focused on a novel decellularized extracellular matrix (dECM) and polydopamine (PDA)-coated 3D-printed poly(ε-caprolactone) (PCL)-based conduits, whereby the PDA surface modification acts as an attachment platform for further dECM attachment. We demonstrated that dECM/PDA-coated PCL conduits possessed higher mechanical properties when compared to human or animal nerves. Such modifications were proved to affect cell behaviors. Cellular behaviors and neuronal differentiation of Schwann cells were assessed to determine for the efficacies of the conduits. There were some cell-specific neuronal markers, such as Nestin, neuron-specific class III beta-tubulin (TUJ-1), and microtubule-associated protein 2 (MAP2) analyzed by enzyme-linked immunosorbent assay, and Nestin expressions were found to be 0.65-fold up-regulated, while TUJ1 expressions were 2.3-fold up-regulated and MAP2 expressions were 2.5-fold up-regulated when compared to Ctl. The methodology of PDA coating employed in this study can be used as a simple model to immobilize dECM onto PCL conduits, and the results showed that dECM/PDA-coated PCL conduits can as a practical and clinically viable tool for promoting regenerative outcomes in larger peripheral nerve defects.


2008 ◽  
Vol 23 (4) ◽  
pp. 364-371 ◽  
Author(s):  
Camila Maria Beder Ribeiro ◽  
Belmiro Cavalcanti do Egito Vasconcelos ◽  
Joaquim Celestino da Silva Neto ◽  
Valdemiro Amaro da Silva Júnior ◽  
Nancy Gurgel Figueiredo

PURPOSE: To analyze the action of gangliosides in peripheral nerve regeneration in the sciatic nerve of the rat. METHODS: The sample was composed of 96 male Wistar rats. The animals were anaesthetized and, after identification of the anaesthesic plane, an incision was made in the posterior region of the thigh, followed by skin and muscle divulsion. The right sciatic nerve was isolated and compressed for 2 minutes. Continuous suture of the skin was performed. The animals were randomly divided into two groups: the experimental group (EG), which received subcutaneous injection of gangliosides, and the control group (CG), which received saline solution (0.9%) to mimic the effects of drug administration. RESULTS: No differences were observed between the experimental and control groups evaluated on the eighth day of observation. At 15 and 30 days the EG showed an decrease in Schwann cell activity and an apparent improvement in fibre organization; at 60 days, there was a slight presence of Schwann cells in the endoneural space and the fibres were organized, indicating nerve regeneration. At 15 and 30 days, the level of cell reaction in the CG had diminished, but there were many cells with cytoplasm in activity and in mitosis; at 60 days, hyperplastic Schwann cells and mitotic activity were again observed, as well as nerve regeneration, but to a lesser extent than in the EG. CONCLUSION: The administration of exogenous gangliosides seems to improve nerve regeneration.


2011 ◽  
Vol 175-176 ◽  
pp. 220-223 ◽  
Author(s):  
Ai Jun Hu ◽  
Bao Qi Zuo ◽  
Feng Zhang ◽  
Qing Lan ◽  
Huan Xiang Zhang

Schwann cells (SCs) are primary structural and functional cells in peripheral nervous system and play a crucial role in peripheral nerve regeneration. Current challenge in peripheral nerve tissue engineering is to produce an implantable scaffold capable of bridging long nerve gaps and assist Scs in directing the growth of regenerating axons in nerve injury recovery. Electrospun silk fibroin nanofibers, fabricated for the cell culture in vitro, can provide such experiment support. Silk fibroin scaffolds (SFS) were fabricated with formic acid (FA), and the average fiber diameter was 305 ± 24 nm. The data from microscopic, immunohistochemical and scanning electron micrograph confirmed that the scaffold was beneficial to the adherence, proliferation and migration of SCs without exerting any significant cytotoxic effects on their phenotype. Thus, providing an experimental foundation accelerated the formation of bands of Bünger to enhance nerve regeneration. 305 nm SFS could be a candidate material for nerve tissue engineering.


1998 ◽  
Vol 43 (2) ◽  
pp. 205-211 ◽  
Author(s):  
Jesper Sørensen ◽  
Georg Haase ◽  
Christian Krarup ◽  
Helene Gilgenkrantz ◽  
Axel Kahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document