Targeted delivery of siRNA using RGDfC-conjugated functionalized selenium nanoparticles for anticancer therapy

2017 ◽  
Vol 5 (33) ◽  
pp. 6941-6952 ◽  
Author(s):  
Yu Xia ◽  
Zhengfang Lin ◽  
Yinghua Li ◽  
Mingqi Zhao ◽  
Changbing Wang ◽  
...  

Preparation of cancer-targeted functionalized selenium nanoparticles loaded with siRNA and their further mechanism in inhibiting tumor growth.

RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 39957-39966 ◽  
Author(s):  
Guifang Gong ◽  
Bailing Fu ◽  
Caixin Ying ◽  
Zhiqin Zhu ◽  
Xiaoqian He ◽  
...  

As a therapeutic anticancer agent, the clinical use of paclitaxel (PTX) is limited by its poor water solubility and serious adverse side effects.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1875
Author(s):  
Seung Rim Hwang ◽  
Kushal Chakraborty ◽  
Jeong Man An ◽  
Jagannath Mondal ◽  
Hong Yeol Yoon ◽  
...  

Drug delivery to tumor sites using nanotechnology has been demonstrated to overcome the drawbacks of conventional anticancer drugs. Altering the surface shape and geometry of nanocomposites alters their chemical properties, which can confer multiple attributes to nanocarriers for the treatment of cancer and their use as imaging agents for cancer diagnosis. However, heterogeneity and blood flow in human cancer limit the distribution of nanoparticles at the site of tumor tisues. For targeted delivery and controlled release of drug molecules in harsh tumor microenvironments, smart nanocarriers combined with various stimuli-responsive materials have been developed. In this review, we describe nanomaterials for smart anticancer therapy as well as their pharmaceutical aspects including pharmaceutical process, formulation, controlled drug release, drug targetability, and pharmacokinetic or pharmacodynamic profiles of smart nanocarriers. Inorganic or organic-inorganic hybrid nanoplatforms and the electrospinning process have also been briefly described here.


2019 ◽  
Vol 11 (17) ◽  
pp. 2287-2312 ◽  
Author(s):  
Aarti Anantram ◽  
Mariam Degani

Members of the antiapoptotic BCL-2 proteins are involved in tumor growth, progression and survival, and are also responsible for chemoresistance to conventional anticancer agents. Early efforts to target these proteins yielded some active compounds; however, newer methodologies involving structure-based drug design, Nuclear Magnetic Resonance (NMR)-based screening and fragment-based screening yielded more potent compounds. Discovery of specific as well as nonspecific inhibitors of this class of proteins has resulted in great advances in targeted chemotherapy and decrease in chemoresistance. Here, we review the history and current progress in direct as well as selective targeting of the BCL-2 proteins for anticancer therapy.


Biomedicines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 76 ◽  
Author(s):  
Fiona Maiyo ◽  
Moganavelli Singh

The development of a biocompatible and nontoxic gene delivery vehicle remains a challenging task. Selenium nanoparticles (SeNPs) have the potential to increase delivery efficiency, to reduce side effects, and to improve therapeutic outcomes. In this study, chitosan (Ch) functionalized folate (FA)-targeted SeNPs were synthesized, characterized, and evaluated for their potential to bind, protect, and safely deliver Fluc-siRNA in vitro. SeNPs of less than 100 nm were successfully synthesised and further confirmed using UV-vis and Fourier transform infrared spectroscopy, transmission electron microscopy, and nanoparticle tracking analysis. Cell viability studies were conducted in vitro in selected cancer and non-cancer cell lines. Folate receptor (FOLR1) targeted and nontargeted luciferase gene silencing studies were assessed in the transformed Hela-tat-Luc cell line expressing the luciferase gene. Targeted and nontargeted SeNP nanocomplexes showed minimal toxicity in all cell lines at selected w/w ratios. Maximum gene silencing was achieved at optimum w/w ratios for both nanocomplexes, with Selenium-chitosan-folic acid (SeChFA) nanocomplexes showing slightly better transgene silencing, as supported by results from docking studies showing that SeChFA nanocomplexes interacted strongly with the folate receptor (FOLR1) with high binding energy of −4.4 kcal mol−1.


2016 ◽  
Vol 24 (6) ◽  
pp. 1106-1116 ◽  
Author(s):  
Sorah Yoon ◽  
Kai-Wen Huang ◽  
Vikash Reebye ◽  
Paul Mintz ◽  
Yu-Wen Tien ◽  
...  

2012 ◽  
Vol 59 (3) ◽  
Author(s):  
Tomasz Cichoń ◽  
Magdalena Jarosz ◽  
Ryszard Smolarczyk ◽  
Barbara Ogórek ◽  
Sybilla Matuszczak ◽  
...  

One of the preconditions of effective anticancer therapy is efficient transfer of the therapeutic agent (chemotherapeutic) to tumor cells. Fundamental barriers making drug delivery and action difficult include underoxygenation, elevated interstitial pressure, poor and abnormal tumor blood vascular network and acidic tumor milieu. In this study we aimed at developing an optimized scheme of administering a combination of an angiogenesis-inhibiting drug (vasostatin) and a chemotherapeutic (cyclophosphamide) in the therapeutic treatment of mice bearing experimental B16-F10 melanoma tumors. We report that the strongest tumor growth inhibition was observed in mice that received two, three or four vasostatin doses in combination with one injection of cyclophosphamide (i.e., V2 + CTX, V3 + CTX or V4 + CTX schemes). Double administration of vasostatin increases oxygenation of B16-F10 tumors. On the other hand, its five-fold administration lowers tumor oxygenation, breaks down tumor vascular network (increasing hypoxia) and leads in consequence to death of cancer cells and appearance of necrotic areas in the tumor. A decreased cyclophosphamide dose in combination with two doses of vasostatin (V2 + CTX scheme) inhibits tumor growth similarly to a larger dose of cyclophosphamide alone.


2020 ◽  
Vol 16 ◽  
Author(s):  
Fiona C Maiyo ◽  
Londiwe S Mbatha ◽  
Moganavelli Singh

Background: Selenium, an essential micronutrient, has been studied for decades for its anticancer properties. Selenium nanoparticles (SeNPs) have now emerged as an interesting alternative for drug and gene delivery. Aims: We aimed to demonstrate in proof of principle, the potential use of SeNPs in targeted pCMV-Luc DNA (pDNA) delivery in vitro. Objectives: To chemically synthesize, characterize and evaluate the transgene expression of functionalized SeNPs in five human cell lines. Methods: SeNPs were synthesized via chemical reduction, coated with chitosan (Ch) and a targeting moiety folic acid (FA). All nanoparticles were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), UV-vis and Fourier transform infra-red (FTIR) spectroscopy. Nanoparticle:pDNA interactions were assessed using the electrophoretic mobility shift, dye displacement and nuclease protection assays. The MTT and Luciferase reporter gene assays were used to determine cytotoxicity and transgene expression respectively, in the human colorectal adenocarcinoma (HT-29 and Caco-2), breast adenocarcinoma (MCF-7), oral epidermoid/cervical carcinoma contaminant (KB) and the embryonic kidney (HEK293) cells. Results: Homogenous nanoparticles of 60-70 nm were able to successfully bind, compact and protect the pDNA from enzyme digestion. Low cytotoxicity was observed in all cells, except for the MCF-7 cells, which could be attributed to apoptosis and necrosis. Luciferase gene expression was highest for the targeted nanocomplexes in the folate-receptor rich KB cell line, confirming nanocomplex uptake through folate receptor-mediated endocytosis. Conclusion: This study opens a new avenue for synergistic treatment of cancer, combining selenium’s bioactivity and its carrier potential for therapeutic gene delivery.


2018 ◽  
Vol 64 (1) ◽  
pp. 62-72
Author(s):  
V. Shcherbakov ◽  
T. Ryabichenko ◽  
G. Skosyreva ◽  
A. Trunov

The review considered the issues of epithelial-mesenchymal transition (EMT) and its role in inflammation, fibrosis, tumor growth. There were analyzed mechanisms and classification of EMT. A comparison of different forms of EMTs was performed. The important role of EMT in the formation of metastasis-initiating cells was noted. There were presented data on the role of fibroblasts in fibrosis of the lung, carcinogenesis. Stimulators and inhibitors of EMTs were summarized. There were considered intracellular paths that were associated with the development of the EMT under the influence of transforming growth factor ß1 (TGF - ß1). It also induced the development of local hypothyroidism, for easy expression of oncofetal genes, which was especially important in tumor growth. Therapy EMT was associated with blocking the actions of TGF - ß1 and was an important area in anticancer therapy.


Sign in / Sign up

Export Citation Format

Share Document