scholarly journals Local delivery of a novel PTHrPviamesoporous bioactive glass scaffolds to improve bone regeneration in a rat posterolateral spinal fusion model

RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12484-12493 ◽  
Author(s):  
Bo Liang ◽  
Jinghuan Huang ◽  
Jianguang Xu ◽  
Xiaolin Li ◽  
Jingfeng Li

With the development of tissue engineering, bone defects, such as fractured long bones or cavitary lesions, may be efficiently repaired and reconstructed using bone substitutes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.


2010 ◽  
Vol 19 (6) ◽  
pp. 940-944 ◽  
Author(s):  
Julio Urrutia ◽  
Jorge Briceno ◽  
Maximiliano Carmona ◽  
Fernando Olavarria ◽  
Felipe Hodgson

2021 ◽  
Vol 9 (5) ◽  
pp. 630-638
Author(s):  
Fatema Aziz Al-Sayed ◽  
◽  
Radwa Hamed Hegazy ◽  
Zeinab Amin Salem ◽  
Hanan Hassan El-Beheiry ◽  
...  

An ideal biomaterial for bone regeneration is a longstanding quest nowadays. This study aimed to evaluate the osteogenic potentiality of nano-bioactive glass enhanced biocement based silicate with or without hyaluronic acid seeded in rabbits’ tibial bone defects. For this, 24 male rabbits with two 5 mm defects (1 defect per tibia) were divided into three equal groups. Among the predefined three groups, for the rabbits of group 1(control) bone defects were left untreated while for the members of group 2 defects received nano-bioactive glass enhanced biocement based silicate cement, and group 3 defects received nano-bioactive glass cement mixed with hyaluronic acid. Animals of each group were divided equally for euthanization after 3 and 6 weeks. Bone specimens were processed and examined histologically with histomorphometrically analysis of new bone area percentage. The bone defects in group 3 showed significantly improved osseous healing histologically as compared to the group 1&2. The morphometric analysis also revealed a significant increase in the new bone area percentage in group 3 as compared to the group 1 and 2 (P < 0.05). The results of the present study can be concluded that bone defects could be treated with nano-bioactive glass and hyaluronic acid cement. Although, nano-bioactive glass alone was capable of bone regeneration the combination of both had significant regenerative capacity.


2020 ◽  
Vol 21 (9) ◽  
pp. 3242 ◽  
Author(s):  
Francesca Diomede ◽  
Guya Diletta Marconi ◽  
Luigia Fonticoli ◽  
Jacopo Pizzicanella ◽  
Ilaria Merciaro ◽  
...  

Bone tissue renewal can be outlined as a complicated mechanism centered on the interaction between osteogenic and angiogenic events capable of leading to bone formation and tissue renovation. The achievement or debacle of bone regeneration is focused on the primary role of vascularization occurrence; in particular, the turning point is the opportunity to vascularize the bulk scaffolds, in order to deliver enough nutrients, growth factors, minerals and oxygen for tissue restoration. The optimal scaffolds should ensure the development of vascular networks to warrant a positive suitable microenvironment for tissue engineering and renewal. Vascular Endothelial Growth Factor (VEGF), a main player in angiogenesis, is capable of provoking the migration and proliferation of endothelial cells and indirectly stimulating osteogenesis, through the regulation of the osteogenic growth factors released and through paracrine signaling. For this reason, we concentrated our attention on two principal groups involved in the renewal of bone tissue defects: the cells and the scaffold that should guarantee an effective vascularization process. The application of Mesenchymal Stem Cells (MSCs), an excellent cell source for tissue restoration, evidences a crucial role in tissue engineering and bone development strategies. This review aims to provide an overview of the intimate connection between blood vessels and bone formation that appear during bone regeneration when MSCs, their secretome—Extracellular Vesicles (EVs) and microRNAs (miRNAs) —and bone substitutes are used in combination.


2002 ◽  
Vol 97 (4) ◽  
pp. 460-463 ◽  
Author(s):  
Ashley R. Poynton ◽  
Fengyu Zheng ◽  
Emre Tomin ◽  
Joseph M. Lane ◽  
G. Bryan Cornwall

Object. The authors studied the effect of a resorbable graft containment device in a rabbit posterolateral lumbar spinal fusion model. Methods. Twenty rabbits were divided into four groups: autologous bone graft (ABG), ABG with the MacroPore containment device (ABG + MP), demineralized bone matrix (DBM), and DBM with the containment device (DBM + MP). Fusion mass was assessed at 6 weeks with high-resolution radiography and volumetric computerized tomography. The graft containment device was associated with alteration of the fusion mass structure and significant enhancement of fusion mass volume (ABG versus ABG + MP, p = 0.027; DBM versus DBM + MP, p = 0.043). Conclusions. A bioabsorbable protective graft containment device successfully enhanced posterolateral spinal fusion mass volume.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Carlos A. Garrido ◽  
Sonja E. Lobo ◽  
Flávio M. Turíbio ◽  
Racquel Z. LeGeros

BCP are considered the most promising biomaterials for bone reconstruction. This study aims at analyzing the outcomes of patients who received BCP as bone substitutes in orthopaedic surgeries. Sixty-six patients were categorized according to the etiology and morphology of the bone defects and received scores after clinical and radiographic evaluations. The final results corresponded to the combination of both parameters and varied from 5 (excellent result) to 2 or lower (poor result). Most of the patients who presented cavitary defects or bone losses due to prosthesis placement or revision, osteotomies, or arthrodesis showed good results, and some of them excellent results. However, patients with segmental defects equal or larger than 3 cm in length were classified as moderate results. This study established clinical parameters where the BCP alone can successfully support the osteogenic process and where the association with other tissue engineering strategies may be considered.


2007 ◽  
Vol 1056 ◽  
Author(s):  
Lijie Zhang ◽  
Sharwatie Ramsaywack ◽  
Hicham Fenniri ◽  
Thomas J Webster

ABSTRACTTo date, although traditional autografts and allografts have been standard methods to treat bone fractures and defects, the formation of biocompatible and injectable scaffolds to induce new bone growth is still a promising method to repair bone defects considering their minimally invasive and osteoinductive features. In this study, a novel bone tissue engineering scaffold based on the self-assembled properties of helical rosette nanotubes (HRNs) and biocompatible hydrogels (specifically, poly(2-hydroxyethyl methacrylate)-pHEMA) was designed to fill bone fractures and repair bone defects. HRNs are a new class of organic nanotubes with a hollow core 11 Å in diameter, which originate from the self-assembly of DNA base pair building blocks (guanine-cytosine) in aqueous solutions. Since HRNs can significantly change their aggregation state and become more viscous based on heating or when added to serum free medium at body temperature, HRNs may provide an exciting therapy to heal bone fractures as injectable bone substitutes. In addition, biocompatible hydrogels were used in conjunction with HRNs in this study to strengthen the bone substitutes and also to serve as a potential drug releasing carrier to stimulate new bone growth at such fracture sites. Two types of HRNs, one with a lysine side chain and the other conjugated to 1% and 10% RGD (arginine-glycine-aspartic acid) peptides on HRNs, were prepared and dispersed into hydrogels. Due to their nanometric features and the helical architecture of HRNs which biomimic collagen, results showed that these HRN hydrogel composites can significantly improve osteoblast adhesion compared to hydrogel controls. Furthermore, 0.01 mg/ml HRNs with RGD embedded in and coated on hydrogels can also enhance osteoblast attachment compared to 0.01 mg/ml HRNs with lysine side chains embedded in and coated on hydrogels. Results showed an increasing trend of osteoblast adhesion on these scaffolds with more RGD groups (10%) on HRNs. In this manner, nanostructured HRN hydrogel composites provide a promising alternative to repair bone defects considering the flexibility in the design of HRNs and their exceptional cytocompatibilty properties.


2020 ◽  
Vol 12 (9) ◽  
pp. 1352-1360
Author(s):  
Yu Yang ◽  
Changgui Tong ◽  
Xuegang Liang ◽  
Huanwen Zou ◽  
Kai Guan

Hydroxyapatite/silk fibroin (HAp/SF) composite was prepared and applied to the posterolateral spinal fusion model in rats to observe the effect of bone fusion. Method: Calcium chloride, diammonium phosphate, SF, and polyvinyl alcohol were used as raw materials, HAp/SF composites were prepared by chemical precipitation. The microstructure of the composite, crystal phase composition, and chemical structure were analyzed by the scanning electron microscope (SEM) and X-ray diffraction (XRD), and fourier transform infrared spectrometer (FTIR Spectrometer). Through the cultivation of osteoblasts MC3T3-E1 in vitro, the adhesion and proliferation (A&P) of cells on the face of materials were investigated. Thereby, the biocompatibility of the material was characterized. HAp/SF material was applied to the rat posterolateral spinal fusion model. The osteogenesis and spinal fusion were evaluated by the imaging observation, histological observation and manual palpation. The results showed that the rod-shaped HAp with uniform size and high purity was obtained, with a diameter of 20∼40 nm and a length of 200∼500 nm, similar to the apatite crystal in natural bone tissue (BT). In composite materials, a spatial network structure was formed by the interweaving of the SF fibers, and HAp was deposited on the face of the SF or in the middle of its network structure. In the obtained HAp/SF materials, the calcium ions of HAp and the carbonyl groups of SF were used to form thermally stable complexes through strong chemical bonds. Besides, SF was a template for the directional induction of HAp crystal growth, and the growth of HAp crystal along the C axis was regulated by SF. The growth direction was parallel to the long axis of SF fibers, and was consistent with the structure of apatite crystals deposited on the face of collagen fibers in natural BT. The results of cell culture in vitro showed that: after comparison with the control group (CG) with pure Hap, the adhesion ability of cells to HAp/SF material was significantly improved. The proliferation capacity of bone artificial bone (BAM) material and HAp/SF material was also significantly improved. The nuclear and skeletal staining results of MC3T3-E1 cells on the face of three groups of materials (HAp, BAM and HAp/SF) were combined, and the results also indicated that BAM and HAp/SF materials had good ability to promote cell A&P. The results of posterolateral spinal fusion in rats showed that HAp/SF materials group palpated the posterolateral spine for fusion. The formation of new BT on the posterolateral side of the spine was revealed by the Micro-computed tomography (Micro-CT) examination. In conclusion, HAp/SF composite had good osteoblastic compatibility and can achieve good spinal fusion effect.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Elke M. F. Lemos ◽  
Sandhra M. Carvalho ◽  
Patrícia S. O. Patrício ◽  
Claudio L. Donnici ◽  
Marivalda M. Pereira

Recent studies in tissue engineering have highlighted the importance of the development of composite materials based on biodegradable polymers containing bioactive glasses, in particular, composites for high load support and excellent cell viability for potential application in bone regeneration. In this work, hybrid composite films were obtained by combining chitosan with bioactive glass in solution form and in nanoparticle dispersion form obtained by the two different synthesis routes: the sol-gel method and coprecipitation. The bioactive glass served both as a mechanical reinforcing agent and as a triggering agent with high bioactivity. The results ofin vitroassays with simulated body fluid demonstrated the formation of a significant layer of fibrils on the surface of the film, with a typical morphology of carbonated hydroxyapatite, reflecting induction of a favorable bioactivity. Maximum tensile stress increased from 42 to 80 MPa to the sample with 5% wt bioactive glass. In addition, samples containing 5% and 10% wt bioactive glass showed a significant increase in cell viability, 18 and 30% increase compared to the control group. The samples showed significant response, indicating that they could be a potential material for use in bone regeneration through tissue engineering.


10.14444/5092 ◽  
2018 ◽  
Vol 12 (6) ◽  
pp. 735-742 ◽  
Author(s):  
ALAN B.C. DANG ◽  
HELENA HONG ◽  
KATIE LEE ◽  
TAMMY LUAN ◽  
SANJAY REDDY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document