scholarly journals Preparation of open-porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility

RSC Advances ◽  
2018 ◽  
Vol 8 (23) ◽  
pp. 12933-12943 ◽  
Author(s):  
Yuan Kang ◽  
Peng Chen ◽  
Xuetao Shi ◽  
Guangcheng Zhang ◽  
Chaoli Wang

For tissue engineering applications, it is essential that biodegradable scaffolds have accessible mechanical properties, high porosity, and good biocompatibility to support the formation of new tissues.

2020 ◽  
Vol 44 (34) ◽  
pp. 14632-14641 ◽  
Author(s):  
Jin Qi ◽  
Yu Zhang ◽  
Xiliang Liu ◽  
Qianmao Zhang ◽  
Chengdong Xiong

New biodegradable PLGA/PTMC composite porous scaffold with high porosity, mechanical properties, significant homogeneous, interconnected pore network and good biocompatibility.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 85 ◽  
Author(s):  
Truc Cong Ho ◽  
Jin-Seok Park ◽  
Sung-Yeoul Kim ◽  
Hoyeol Lee ◽  
Ju-Sop Lim ◽  
...  

For tissue engineering applications, biodegradable scaffolds containing high molecular weights (MW) of collagen and sodium alginate have been developed and characterized. However, the properties of low MW collagen-based scaffolds have not been studied in previous research. This work examined the distinctive properties of low MW collagen-based scaffolds with alginate unmodified and modified by subcritical water. Besides, we developed a facile method to cross-link water-soluble scaffolds using glutaraldehyde in an aqueous ethanol solution. The prepared cross-linked scaffolds showed good structural properties with high porosity (~93%) and high cross-linking degree (50–60%). Compared with collagen (6000 Da)-based scaffolds, collagen (25,000 Da)-based scaffolds exhibited higher stability against collagenase degradation and lower weight loss in phosphate buffer pH 7.4. Collagen (25,000 Da)-based scaffolds with modified alginate tended to improve antioxidant capacity compared with scaffolds containing unmodified alginate. Interestingly, in vitro coagulant activity assay demonstrated that collagen (25,000 Da)-based scaffolds with modified alginate (C25-A63 and C25-A21) significantly reduced the clotting time of human plasma compared with scaffolds consisting of unmodified alginate. Although some further investigations need to be done, collagen (25,000 Da)-based scaffolds with modified alginate should be considered as a potential candidate for tissue engineering applications.


2016 ◽  
Vol 7 (14) ◽  
pp. 2553-2564 ◽  
Author(s):  
Yating Jia ◽  
Weizhong Wang ◽  
Xiaojun Zhou ◽  
Wei Nie ◽  
Liang Chen ◽  
...  

A poly(glycerol sebacate)-based elastomeric copolyesters with improved mechanical properties and higher water uptake capacity.


2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Mang Zhang ◽  
Yuli Chen ◽  
Fu-pen Chiang ◽  
Pelagia Irene Gouma ◽  
Lifeng Wang

The electrospinning process enables the fabrication of randomly distributed nonwoven polymer fiber networks with high surface area and high porosity, making them ideal candidates for multifunctional materials. The mechanics of nonwoven networks has been well established for elastic deformations. However, the mechanical properties of the polymer fibrous networks with large deformation are largely unexplored, while understanding their elastic and plastic mechanical properties at different fiber volume fractions, fiber aspect ratio, and constituent material properties is essential in the design of various polymer fibrous networks. In this paper, a representative volume element (RVE) based finite element model with long fibers is developed to emulate the randomly distributed nonwoven fibrous network microstructure, enabling us to systematically investigate the mechanics and large deformation behavior of random nonwoven networks. The results show that the network volume fraction, the fiber aspect ratio, and the fiber curliness have significant influences on the effective stiffness, effective yield strength, and the postyield behavior of the resulting fiber mats under both tension and shear loads. This study reveals the relation between the macroscopic mechanical behavior and the local randomly distributed network microstructure deformation mechanism of the nonwoven fiber network. The model presented here can also be applied to capture the mechanical behavior of other complex nonwoven network systems, like carbon nanotube networks, biological tissues, and artificial engineering networks.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2350 ◽  
Author(s):  
Jun Peng ◽  
Sheng-Qi Yang

High temperature treatment has a significant influence on the mechanical behavior and the associated microcracking characteristic of rocks. A good understanding of the thermal damage effects on rock behavior is helpful for design and stability evaluation of engineering structures in the geothermal field. This paper studies the mechanical behavior and the acoustic emission (AE) characteristic of three typical rocks (i.e., sedimentary, metamorphic, and igneous), with an emphasis on how the difference in rock type (i.e., porosity and mineralogical composition) affects the rock behavior in response to thermal damage. Compression tests are carried out on rock specimens which are thermally damaged and AE monitoring is conducted during the compression tests. The mechanical properties including P-wave velocity, compressive strength, and Young’s modulus for the three rocks are found to generally show a decreasing trend as the temperature applied to the rock increases. However, these mechanical properties for quartz sandstone first increase to a certain extent and then decrease as the treatment temperature increases, which is mainly attributed to the high porosity of quartz sandstone. The results obtained from stress–strain curve, failure mode, and AE characteristic also show that the failure of quartz-rich rock (i.e., quartz sandstone and granite) is more brittle when compared with that of calcite-rich rock (i.e., marble). However, the ductility is enhanced to some extent as the treatment temperature increases for all the three examined rocks. Due to high brittleness of quartz sandstone and granite, more AE activities can be detected during loading and the recorded AE activities mostly accumulate when the stress approaches the peak strength, which is quite different from the results of marble.


Author(s):  
Weibing Teng ◽  
Joseph Cappello ◽  
Xiaoyi Wu

Silk may possess superior mechanical strength while its resilience is very poor. In contrast, elastin in human arteries is very soft but extremely durable with an estimated half-life of 70 years. By combing polypeptide sequences derived from native silk and elastin, we have produced a series of silk-elastin-like proteins (SELPs), which have displayed a set of outstanding properties such as good biocompatibility and controllable biodegradation rates [1]. In this study, we will examine the crystallization of the silk-like blocks and the crosslinking of the elastin-like blocks, as well as their influences on the mechanical behavior of SELPs. The ultimate goal of this study is to explore the potential of SELPs for applications in the engineering of load-bearing tissues such as arteries.


2004 ◽  
Vol 83 (7) ◽  
pp. 523-528 ◽  
Author(s):  
M.T. Duailibi ◽  
S.E. Duailibi ◽  
C.S. Young ◽  
J.D. Bartlett ◽  
J.P. Vacanti ◽  
...  

The recent bioengineering of complex tooth structures from pig tooth bud tissues suggests the potential for the regeneration of mammalian dental tissues. We have improved tooth bioengineering methods by comparing the utility of cultured rat tooth bud cells obtained from three- to seven-day post-natal (dpn) rats for tooth-tissue-engineering applications. Cell-seeded biodegradable scaffolds were grown in the omenta of adult rat hosts for 12 wks, then harvested. Analyses of 12-week implant tissues demonstrated that dissociated 4-dpn rat tooth bud cells seeded for 1 hr onto PGA or PLGA scaffolds generated bioengineered tooth tissues most reliably. We conclude that tooth-tissue-engineering methods can be used to generate both pig and rat tooth tissues. Furthermore, our ability to bioengineer tooth structures from cultured tooth bud cells suggests that dental epithelial and mesenchymal stem cells can be maintained in vitro for at least 6 days.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3665 ◽  
Author(s):  
Haiyan Long ◽  
Kunlong Ma ◽  
Zhenghua Xiao ◽  
Xiaomei Ren ◽  
Gang Yang

Microbial transglutaminase (mTG) was used as a crosslinking agent in the preparation of gelatin sponges. The physical properties of the materials were evaluated by measuring their material porosity, water absorption, and elastic modulus. The stability of the sponges were assessed via hydrolysis and enzymolysis. To study the material degradation in vivo, subcutaneous implantations of sponges were performed on rats for 1–3 months, and the implanted sponges were analyzed. To evaluate the cell compatibility of the mTG crosslinked gelatin sponges (mTG sponges), adipose-derived stromal stem cells were cultured and inoculated into the scaffold. Cell proliferation and viability were measured using alamarBlue assay and LIVE/DEAD fluorescence staining, respectively. Cell adhesion on the sponges was observed by scanning electron microscopy (SEM). Results show that mTG sponges have uniform pore size, high porosity and water absorption, and good mechanical properties. In subcutaneous implantation, the material was partially degraded in the first month and completely absorbed in the third month. Cell experiments showed evident cell proliferation and high viability. Results also showed that the cells grew vigorously and adhered tightly to the sponge. In conclusion, mTG sponge has good biocompatibility and can be used in tissue engineering and regenerative medicine.


2007 ◽  
Vol 330-332 ◽  
pp. 695-698 ◽  
Author(s):  
Dong Hua Guan ◽  
Chun Peng Huang ◽  
Ji Liu ◽  
Kun Tian ◽  
Lin Niu ◽  
...  

Poly 3-hydroxybutyrate (PHB) as a kind of polysaccharides has been proved promising for tissue engineering because of its biocompatibility and biodegradability. But its poor mechanical properties and hydrophilicity limit its application. In order to explore a new useful porch to improve the performance of PHB-based GTR membrane, membrane composed of nano-HA / PHB composite was manufactured through the air/jet electrospinning process which can potentially generate nanometer scale diameter fibers and enlarge surface area of materials while maintaining high porosity. Successively, the biomineralization behavior of the membrane in supersaturated calcification solution (SCS) was studied. The Results of this investigation show that the successfully manufactured porous nano-HA/PHB membrane has high activity in SCS and its ability of inducing the formation of mineral crystal in vitro than that of the unfilled PHB membrane. It can be concluded that the addition of nano-HA and the novel technology could improve the performance of the PHB-based GTR membrane.


Sign in / Sign up

Export Citation Format

Share Document