scholarly journals Controlling catalytic activity and selectivity for partial hydrogenation by tuning the environment around active sites in iridium complexes bonded to supports

2019 ◽  
Vol 10 (9) ◽  
pp. 2623-2632 ◽  
Author(s):  
Melike Babucci ◽  
Chia-Yu Fang ◽  
Jorge E. Perez-Aguilar ◽  
Adam S. Hoffman ◽  
Alexey Boubnov ◽  
...  

Enveloping atomically dispersed supported iridium with the choice of ionic liquid molecular sheaths and supports controls the catalytic performance.


2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.



2016 ◽  
Vol 852 ◽  
pp. 485-488 ◽  
Author(s):  
Qiang Zhang ◽  
Xin Zhao ◽  
Xue Hua Zhu ◽  
Ji Hang Li

A magnetic nanoparticles supported dual acidic ionic liquid catalyst was prepared via anchoring 3-sulfobutyl-1-(3-propyltriethoxysilane) imidazolium hydrogen sulfate onto the surface of silica-coated Fe3O4 nanoparticles. And this novel supported acidic ionic liquid catalyst showed good catalytic performance in esterification. More importantly, the catalyst could be easily recovered by an external magnet and reused six times without significant loss of catalytic activity.



2019 ◽  
Vol 9 (23) ◽  
pp. 6659-6668 ◽  
Author(s):  
Jie Yang ◽  
Haochen Yu ◽  
Yanbing Wang ◽  
Fuyuan Qi ◽  
Haodong Liu ◽  
...  

Pd/CaMn2O4 provides ideal active sites for oxygen adsorption and desorption, resulting in the promoted charge transfer ability and catalytic activity.



2017 ◽  
Vol 380 ◽  
pp. 151-160 ◽  
Author(s):  
Sara Faiz Hanna Tasfy ◽  
Noor Asmawati Mohd Zabidi ◽  
Maizatul Shima Shaharun ◽  
Duvvria Subbarao ◽  
Ahmed Elbagir

Utilization of CO2 as a carbon source to produce valuable chemicals is one of the important ways to reduce the global warming caused by increasing CO2 in the atmosphere. Supported metal catalysts are crucial to produce clean and renewable fuels and chemicals from the stable CO2 molecules. The catalytic conversion of CO2 into methanol is recently under increased scrutiny as an opportunity to be used as a low-cost carbon source. Therefore, a series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were synthesized via an impregnation technique with different total metal loading and tested in the catalytic hydrogenation of CO2 to methanol. The morphological and textural properties of the synthesized catalysts were determined by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and N2-adsorption. The CO2 hydrogenation reaction was performed in a microactivity fixed-bed system at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. Experimental results showed that the catalytic structure and performance were strongly affected by the loading of the active site. Where, the catalytic activity, the methanol selectivity as well as the space-time yield increased with increasing the metal loading until it reaches the maximum values at a metal loading of 15 wt% while further addition of metal inhibits the catalytic performance. The higher catalytic activity of 14% and methanol selectivity of 92% was obtained over a Cu/ZnO-SBA-15 catalyst with a total bimetallic loading of 15 wt%. The excellent performance of 15 wt% Cu/ZnO-SBA-15 catalyst is attributed to the presence of well dispersed active sites with small particle size, higher Cu surface area, and lower catalytic reducibility.



Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5506
Author(s):  
Daniel Carreira Batalha ◽  
Márcio José da Silva

Nowadays, the synthesis of biofuels from renewable raw materials is very popular. Among the various challenges involved in improving these processes, environmentally benign catalysts compatible with an inexpensive feedstock have become more important. Herein, we report the recent advances achieved in the development of Niobium-containing heterogeneous catalysts as well as their use in routes to produce biodiesel. The efficiency of different Niobium catalysts in esterification and transesterification reactions of lipids and oleaginous raw materials was evaluated, considering the effect of main reaction parameters such as temperature, time, catalyst load, and oil:alcohol molar ratio on the biodiesel yield. The catalytic performance of Niobium compounds was discussed considering the characterization data obtained by different techniques, including NH3-TPD, BET, and Pyr-FT-IR analysis. The high catalytic activity is attributed to its inherent properties, such as the active sites distribution over a high specific surface area, strength of acidity, nature, amount of acidic sites, and inherent mesoporosity. On top of this, recycling experiments have proven that most Niobium catalysts are stable and can be repeatedly used with consistent catalytic activity.



2020 ◽  
Vol 10 (15) ◽  
pp. 5256-5266 ◽  
Author(s):  
Jihang Yu ◽  
Qiangsheng Guo ◽  
Xiuzhen Xiao ◽  
Haifang Mao ◽  
Dongsen Mao ◽  
...  

CuO/CeO2 catalysts with low CuO content and calcined at 800 °C exhibited better catalytic performance than those calcined at 500 °C. The coordinatively unsaturated copper atoms were proved to be the main active sites in the CuO/CeO2 catalysts.



2017 ◽  
Vol 5 (30) ◽  
pp. 15961-15969 ◽  
Author(s):  
Robin Babu ◽  
Roshith Roshan ◽  
Yeongrok Gim ◽  
Yun Hee Jang ◽  
Jintu Francis Kurisingal ◽  
...  

The correlation between dimensionality and active sites on deciding the catalytic performance of an MOF catalyst in CO2–epoxide cycloaddition reactions has been studied.



2012 ◽  
Vol 610-613 ◽  
pp. 94-99 ◽  
Author(s):  
Quan Hui Guo ◽  
Juan Li ◽  
Ying Xia Li

Fe-modified ZSM-5 and β zeolites were prepared by adopting liquid ion-exchange method and their catalytic performance was studied in the N2O decomposition reaction. The state of Fe loaded on Fe-zeolites was investigated by means of UV-vis diffuse spectra, infrared spectroscopy, EPR and H2-TPR. The results of IR of hydroxyl stretching and UV-vis investigationSubscript texts indicated that part of the iron-ions was introduced into zeolites at the charge-balancing sites. The results of EPR and H2-TPR investigations showed that the same iron species were loaded on ZSM-5 and β zeolites. However, the results of IR of the perturbed anti-symmetric T-O-T vibrations of iron-ions indicated that different types of ZSM-5 and β zeolites resulted in different distributions of charge-balancing iron cations. The iron-ions could replace Brönsted acid protons at the straight channel wall (α sites), intersection of straight and sinusoidal channels (β sites), and sinusoidal channel wall (γ sites) within the ZSM-5 zeolite. In the case of Fe-β zeolites, iron-ions mainly located in the straight channels. We observed that the catalytic activity of the iron ions located on the α sites of ZSM-5 zeolites was better than those of iron ions located on β and γ sites in N2O direct decomposition, since the former was the most easily reduced from Fe3+to Fe2+in H2. Furthermore, it was found that Fe-β zeolite showed higher catalytic activity than Fe-ZSM-5 zeolite. This difference was attributed to the active sites located almost exclusively in the straight zeolite channels.



CrystEngComm ◽  
2017 ◽  
Vol 19 (34) ◽  
pp. 5048-5057 ◽  
Author(s):  
Kaisheng Yao ◽  
Chenchen Zhao ◽  
Nannan Sun ◽  
Weiwei Lu ◽  
Yuan Zhang ◽  
...  

Freestanding CuS nanowalls, with excellent catalytic activity for AP thermal decomposition, were grown and assembled at the [C10mim]Br-modulated liquid–liquid interface.



Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 550 ◽  
Author(s):  
J. Andrés Tavizón-Pozos ◽  
Carlos E. Santolalla-Vargas ◽  
Omar U. Valdés-Martínez ◽  
José Antonio de los Reyes Heredia

This paper reports the effects of changes in the supported active phase concentration over titania containing mixed oxides catalysts for hydrodeoxygenation (HDO). Mo and CoMo supported on sol–gel Al2O3–TiO2 (Al/Ti = 2) were synthetized and tested for the HDO of phenol in a batch reactor at 5.5 MPa, 593 K, and 100 ppm S. Characterization results showed that the increase in Mo loading led to an increase in the amount of oxide Mo species with octahedral coordination (MoOh), which produced more active sites and augmented the catalytic activity. The study of the change of Co concentration allowed prototypes of the oxide species and their relationship with the CoMo/AT2 activity to be described. Catalysts were tested at four different Co/(Co + Mo) ratios. The results presented a correlation between the available fraction of CoOh and the catalytic performance. At low CoOh fractions (Co/(Co + Mo) = 0.1), Co could not promote all MoS2 slabs and metallic sites from this latter phase performed the reaction. Also, at high Co/(Co + Mo) ratios (0.3 and 0.4), there was a loss of Co species. The Co/(Co + Mo) = 0.2 ratio presented an optimum amount of available CoOh and catalytic activity since the XPS results indicated a higher concentration of the CoMoS phase than at a higher ratio.



Sign in / Sign up

Export Citation Format

Share Document