scholarly journals Photoluminescence in m-carborane–anthracene triads: a combined experimental and computational study

2018 ◽  
Vol 6 (42) ◽  
pp. 11336-11347 ◽  
Author(s):  
Mahdi Chaari ◽  
Zsolt Kelemen ◽  
José Giner Planas ◽  
Francesc Teixidor ◽  
Duane Choquesillo-Lazarte ◽  
...  

m-Carborane has demonstrated to be a perfect platform to boost the fluorescence properties of anthracene, giving rise to high fluorescence quantum yields in solution and also retaining fluorescence emission in the aggregate state.

2005 ◽  
Vol 09 (06) ◽  
pp. 430-435 ◽  
Author(s):  
Can-Cheng Guo ◽  
Tie-Gang Ren ◽  
Jian Wang ◽  
Chun-Yan Li ◽  
Jian-Xin Song

Five new meso-tetrakis(1-arylpyrazol-4-yl)porphyrins were synthesized to investigate their fluorescence properties. Preparation of these porphyrins was carried out by cyclization of tetramethoxypropane with substituted phenylhydrazine, followed by formylation to give the corresponding aldehydes, which reacted with pyrrole under the Adler reaction condition to get the target porphyrins (1a-1e). All the porphyrins were characterized by 1 H NMR, elemental analysis, UV-vis spectra and mass spectra. Red fluorescence emission of these porphyrins was observed in fluorescence spectra. Compared with meso-tetraphenylporphyrin (TPPH2), these meso-tetrakis(1-arylpyrazol-4-yl) porphyrins had a significant red shift in UV-vis and fluorescence spectra with increased fluorescence quantum yields.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 847-852 ◽  
Author(s):  
Xian-Fu Zhang ◽  
Xiaojie Sun

The synthesis, fluorescence properties and singlet oxygen generation capability of germanium tetrabenzotriazacorrole (LGeTBC), germanium phthalocyanine (Cl[Formula: see text]GePc) and their derivatives are described. Measurements include UV-vis absorption spectra, fluorescence emission spectra, fluorescence quantum yields fluorescence lifetimes, and singlet delta oxygen quantum yields. LGeTBC and its derivatives exhibit quite different spectral and fluorescence properties from their phthalocyanine precursor. Both LGeTBC and Cl[Formula: see text]GePc show high singlet delta oxygen quantum yields and suitable fluorescence quantum yields, indicating that they can act as good singlet oxygen photosensitizers for photodynamic therapy.


Synthesis ◽  
2021 ◽  
Author(s):  
Xianglong Chu ◽  
Yadi Niu ◽  
Chen Ma ◽  
Xiaodong Wang ◽  
Yunliang Lin ◽  
...  

AbstractA rapid access to a series of N-heteroarene fluorophores has been developed on the basis of the palladium-catalyzed direct oxidative C–H/C–H coupling of imidazo[1,2-a]pyridines with thiophenes/furans. The photophysical properties–structure relationship was systematically investigated. The resulting N-heteroarene fluorophores present color-tunable emissions (λem: 431–507 nm in CH2Cl2) and high fluorescence quantum yields (up to 91% in CH2Cl2).


1986 ◽  
Vol 41 (11) ◽  
pp. 1311-1314 ◽  
Author(s):  
A. Balter ◽  
W. Nowak ◽  
P. Milart ◽  
J. Sepioł

Absorption and fluorescence properties, excited state lifetimes and fluorescence quantum yields were determined for a series of 3,5-diarylaminobenzene derivatives in solvents of different polarities. The role of the nitrile, methyl, phenyl and naphthyl substituents is discussed. Especially the steric effects on the spectroscopic behaviour of the investigated molecules are studied.


2020 ◽  
Vol 17 (13) ◽  
pp. 3733-3755 ◽  
Author(s):  
Nicholas C. Parazoo ◽  
Troy Magney ◽  
Alex Norton ◽  
Brett Raczka ◽  
Cédric Bacour ◽  
...  

Abstract. Recent successes in passive remote sensing of far-red solar-induced chlorophyll fluorescence (SIF) have spurred the development and integration of canopy-level fluorescence models in global terrestrial biosphere models (TBMs) for climate and carbon cycle research. The interaction of fluorescence with photochemistry at the leaf and canopy scales provides opportunities to diagnose and constrain model simulations of photosynthesis and related processes, through direct comparison to and assimilation of tower, airborne, and satellite data. TBMs describe key processes related to the absorption of sunlight, leaf-level fluorescence emission, scattering, and reabsorption throughout the canopy. Here, we analyze simulations from an ensemble of process-based TBM–SIF models (SiB3 – Simple Biosphere Model, SiB4, CLM4.5 – Community Land Model, CLM5.0, BETHY – Biosphere Energy Transfer Hydrology, ORCHIDEE – Organizing Carbon and Hydrology In Dynamic Ecosystems, and BEPS – Boreal Ecosystems Productivity Simulator) and the SCOPE (Soil Canopy Observation Photosynthesis Energy) canopy radiation and vegetation model at a subalpine evergreen needleleaf forest near Niwot Ridge, Colorado. These models are forced with local meteorology and analyzed against tower-based continuous far-red SIF and gross-primary-productivity-partitioned (GPP) eddy covariance data at diurnal and synoptic scales during the growing season (July–August 2017). Our primary objective is to summarize the site-level state of the art in TBM–SIF modeling over a relatively short time period (summer) when light, canopy structure, and pigments are similar, setting the stage for regional- to global-scale analyses. We find that these models are generally well constrained in simulating photosynthetic yield but show strongly divergent patterns in the simulation of absorbed photosynthetic active radiation (PAR), absolute GPP and fluorescence, quantum yields, and light response at the leaf and canopy scales. This study highlights the need for mechanistic modeling of nonphotochemical quenching in stressed and unstressed environments and improved the representation of light absorption (APAR), distribution of light across sunlit and shaded leaves, and radiative transfer from the leaf to the canopy scale.


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Daniel Mártire ◽  
Walter Massad ◽  
Hernán Montejano ◽  
Mónica Gonzalez ◽  
Paula Caregnato ◽  
...  

AbstractThe fluorescence emission spectra and fluorescence quantum yields of hemicyanine dyes LDS 698, LDS 722, and LDS 730 were measured in different media. No transient species was detected in the laser flash-photolysis experiments performed with Ar-saturated solutions of the dyes in methanol. However, in the presence of 0.08 M potassium iodide, the absorption of the triplet states was clearly observed. Oxygen consumption measurements in the absence and presence of a chemical trap (furfuryl alcohol) in MeOH: H2O (φ r = 1: 1) solutions of the dyes containing KI confirmed the generation of singlet molecular oxygen.


2006 ◽  
Vol 12 (3) ◽  
pp. 824-831 ◽  
Author(s):  
Hajime Maeda ◽  
Tomohiro Maeda ◽  
Kazuhiko Mizuno ◽  
Kazuhisa Fujimoto ◽  
Hisao Shimizu ◽  
...  

2008 ◽  
Vol 17 (04) ◽  
pp. 473-485 ◽  
Author(s):  
XIAOQIN ZHU ◽  
YING QIAN ◽  
WEI HUANG ◽  
CHANGGUI LU ◽  
YIPING CUI

Two symmetrical TPA chromophores containing 1,3,4-oxadiazole group were designed and synthesized through the Wittig–Horner reaction. All compounds were characterized by NMR, IR, UV and melting point. Chromophore I and II showed good thermal stability and did lose less than 5% weight on heating to about 300°C. The electrochemical property was explored by cyclic voltammetry. The HOMO and LUMO energy of compound I were estimated to be -3.65 eV and -1.09 eV. That of compound II were -3.69 eV and -1.10 eV. Both chromophores exhibited a positive solvatochromic behavior. In CH2Cl2 , the maximum peaks of single-photon-excited fluorescence (SPEF) were at 512 nm for compound I and at 495 nm for compound II with high fluorescence quantum yields 0.73 and 0.70, respectively. The two-photon-excited fluorescence (TPEF) had also been investigated. Pumped by femtosecond laser at 800 nm, strong up-conversion emissions with the central wavelength were at 532 nm for compound I and 550 nm for compound II in the solution of CH2Cl2 .


NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650073 ◽  
Author(s):  
Lu Liu ◽  
Hu Xu ◽  
Bing Shen ◽  
Xinhua Zhong

Pentaerythritol tetrakis 3-mercaptopropionate (PTMP) grafted poly(acryl acid) (PAA) ionic hydrophilic oligomer PAA-PTMP (PP) and dihydrolipoic acid (DHLA) grafted methoxypoly(ethylene glycol) (mPEG) nonionic hydrophilic oligomer mPEG-DHLA (PD) have been designed, synthesized and used as co-capping ligands in water-solubilization of hydrophobic quantum dots (QDs) via ligand exchange. The obtained oligomers with multi-thiol groups could bind strongly to the surface atoms of QDs. Meanwhile, the carboxyl groups (from PP) and mPEG segment (from PD) can render QDs water-soluble, and the free carboxylic groups can possibly be used for the further bioconjugation. The resulting water-soluble QDs have been characterized by ultraviolet-visible (UV-Vis), fluorescence, Fourier transform infrared (FTIR) spectroscopy as well as transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. The water-soluble QDs have relatively small hydrodynamic size (10[Formula: see text]12 nm), and importantly, retain high fluorescence quantum yields (up to 45%) compared with that of the originally hydrophobic QDs (49%). In addition, they have tunable surface charges and show excellent colloidal stability over a relatively broad pH range ([Formula: see text]), in high salt concentration, and even after thermal treatment at 100[Formula: see text]C. These results indicate that the water-soluble QDs coated by PP and PD oligomers have potential applications in cellular imaging and biosensor.


Author(s):  
Mireille Kamariza ◽  
Samantha G. L. Keyser ◽  
Ashley Utz ◽  
Benjamin D. Knapp ◽  
Green Ahn ◽  
...  

ABSTRACTThere is an urgent need for point-of-care tuberculosis (TB) diagnostic methods that are fast, inexpensive, and operationally simple. Here, we report on a bright solvatochromic dye trehalose conjugate that specifically detects Mycobacterium tuberculosis (Mtb) in minutes. 3-hydroxychromone (3HC) dyes, known to yield high fluorescence quantum yields, exhibit shifts in fluorescence intensity in response to changes in environmental polarity. We synthesized two analogs of 3HC-trehalose conjugates (3HC-2-Tre and 3HC-3-Tre) and determined that 3HC-3-Tre has exceptionally favorable properties for Mtb detection. 3HC-3-Tre-labeled mycobacterial cells displayed a 10-fold increase in fluorescence intensity compared to our previously reports on the dye 4,4-N,N-dimethylaminonapthalimide (DMN-Tre). Excitingly, we detected fluorescent Mtb cells within 10 minutes of probe treatment. Thus, 3HC-3-Tre permits rapid visualization of mycobacteria that ultimately could empower improved Mtb detection at the point-of-care in low-resource settings.


Sign in / Sign up

Export Citation Format

Share Document