scholarly journals Microencapsulation improves chondrogenesis in vitro and cartilaginous matrix stability in vivo compared to bulk encapsulation

2020 ◽  
Vol 8 (6) ◽  
pp. 1711-1725 ◽  
Author(s):  
Fanyi Li ◽  
Clara Levinson ◽  
Vinh X. Truong ◽  
Lee Ann Laurent-Applegate ◽  
Katharina Maniura-Weber ◽  
...  

The encapsulation of cells into microgels is attractive for applications in tissue regeneration.

2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 855
Author(s):  
Paola Serrano Martinez ◽  
Lorena Giuranno ◽  
Marc Vooijs ◽  
Robert P. Coppes

Radiotherapy is involved in the treatment of many cancers, but damage induced to the surrounding normal tissue is often inevitable. Evidence suggests that the maintenance of homeostasis and regeneration of the normal tissue is driven by specific adult tissue stem/progenitor cells. These tasks involve the input from several signaling pathways. Irradiation also targets these stem/progenitor cells, triggering a cellular response aimed at achieving tissue regeneration. Here we discuss the currently used in vitro and in vivo models and the involved specific tissue stem/progenitor cell signaling pathways to study the response to irradiation. The combination of the use of complex in vitro models that offer high in vivo resemblance and lineage tracing models, which address organ complexity constitute potential tools for the study of the stem/progenitor cellular response post-irradiation. The Notch, Wnt, Hippo, Hedgehog, and autophagy signaling pathways have been found as crucial for driving stem/progenitor radiation-induced tissue regeneration. We review how these signaling pathways drive the response of solid tissue-specific stem/progenitor cells to radiotherapy and the used models to address this.


Real-time PCR offers a wide area of application to analyze the role of gene activity in various biological aspects at the molecular level with higher specificity, sensitivity and the potential to troubleshoot with post-PCR processing and difficulties. With the recent advancement in the development of functional tissue graft for the regeneration of damaged/diseased tissue, it is effective to analyze the cell behaviour and differentiation over tissue construct toward specific lineage through analyzing the expression of an array of specific genes. With the ability to collect data in the exponential phase, the application of Real-Time PCR has been expanded into various fields such as tissue engineering ranging from absolute quantification of gene expression to determine neo-tissue regeneration and its maturation. In addition to its usage as a research tool, numerous advancements in molecular diagnostics have been achieved, including microbial quantification, determination of gene dose and cancer research. Also, in order to consistently quantify mRNA levels, Northern blotting and in situ hybridization (ISH) methods are less preferred due to low sensitivity, poor precision in detecting gene expression at a low level. An amplification step is thus frequently required to quantify mRNA amounts from engineered tissues of limited size. When analyzing tissue-engineered constructs or studying biomaterials–cells interactions, it is pertinent to quantify the performance of such constructs in terms of extracellular matrix formation while in vitro and in vivo examination, provide clues regarding the performance of various tissue constructs at the molecular level. In this chapter, our focus is on Basics of qPCR, an overview of technical aspects of Real-time PCR; recent Protocol used in the lab, primer designing, detection methods and troubleshooting of the experimental problems.


2021 ◽  
Vol 17 (9) ◽  
pp. 1840-1849
Author(s):  
Mao Li ◽  
Min Hu ◽  
Honglian Zeng ◽  
Bo Yang ◽  
Yi Zhang ◽  
...  

Native skin repair requires wound care products that not only protect the wound from bacterial infection, but also accelerate wound closure and minimize scarring. Nanomaterials have been widely applied for wound healing due to their multifunctional properties. In a previous study, we prepared and characterized electrospinning zinc oxide/silver/polyvinylpyrrolidone/polycaprolactone (ZnO/Ag/PVP/PCL) nanofibers using ZnO and Ag nanoparticles, and evaluated their antibacterial effect in vitro. In this work, further characterization studies were performed, which confirmed that the ZnO/Ag nanoparticles were physically embedded and evenly distributed in the ZnO/Ag/PVP/PCL nanofibers, enabling the sustained release of Ag and Zn. In addition, the bimetallic nanofibers showed satisfactory fluid handling and flexibility. In vivo wound healing and histology studies showed that the ZnO/Ag/PVP/PCL nanofibers had a better anti-inflammatory, skin tissue regeneration, and wound healing effect than monometallic nanofibers or a commercially available wound plaster (Yunnan Baiyao). Therefore, ZnO/Ag/PVP/PCL bimetallic nanofibers may be a safe, efficient biomedical dressing for wound healing.


2020 ◽  
Vol 4 (9) ◽  
pp. 2731-2743
Author(s):  
Yang Gao ◽  
Tianxu Zhang ◽  
Junyao Zhu ◽  
Dexuan Xiao ◽  
Mei Zhang ◽  
...  

The challenges associated with muscle degenerative diseases and volumetric muscle loss (VML) emphasizes the prospects of muscle tissue regeneration.


In Vivo ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 2287-2295
Author(s):  
OLE JUNG ◽  
MILENA RADENKOVIC ◽  
SANJA STOJANOVIĆ ◽  
CAROLINE LINDNER ◽  
MILIJANA BATINIC ◽  
...  

2007 ◽  
Vol 361-363 ◽  
pp. 1265-1268 ◽  
Author(s):  
P.P. Cortez ◽  
Yuki Shirosaki ◽  
C.M. Botelho ◽  
M.J. Simões ◽  
F. Gartner ◽  
...  

Previous in vitro studies confirmed an improved cytocompatibility of chitosan-silicate hybrid membranes over chitosan membranes. The main goal of this study was to assess the in vivo histocompatibility of both membranes through subcutaneous implantations at different time periods, 1 week, 1, 2 and 3 months, using a sheep model. Chitosan membranes elicited an exuberant inflammatory response and were consequently rejected. The hybrid chitosan membranes were not rejected and the degree of inflammatory response decreased gradually until the third month of implantation. Histological evaluation also showed that these membranes can be resorbed in vivo. This study demonstrates that the incorporation of silicate into the chitosan solution improves its histocompatibility, indicating that the hybrid chitosan-silicate membranes are suitable candidates to be used in clinical applications.


Sign in / Sign up

Export Citation Format

Share Document