Biochanin A protects against PM2.5-induced acute pulmonary cell injury by interacting with the target protein MEK5

2019 ◽  
Vol 10 (11) ◽  
pp. 7188-7203
Author(s):  
Zhaohui Xue ◽  
Junyu Wang ◽  
Wancong Yu ◽  
Dan Li ◽  
Yixia Zhang ◽  
...  

Biochanin A may exert protection against PM2.5-induced acute pulmonary cell injury by targeting MEK5 to inhibit activation of the MEK5/ERK5/NF-κB signaling pathway.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yinwu Bao ◽  
Mengqiu Bai ◽  
Huanhuan Zhu ◽  
Yuan Yuan ◽  
Ying Wang ◽  
...  

AbstractDemethylase Tet2 plays a vital role in the immune response. Acute kidney injury (AKI) initiation and maintenance phases are marked by inflammatory responses and leukocyte recruitment in endothelial and tubular cell injury processes. However, the role of Tet2 in AKI is poorly defined. Our study determined the degree of renal tissue damage associated with Tet2 gene expression levels in a cisplatin-induced AKI mice model. Tet2-knockout (KO) mice with cisplatin treatment experienced severe tubular necrosis and dilatation, inflammation, and AKI markers’ expression levels than the wild-type mice. In addition, the administration of Tet2 plasmid protected Tet2-KO mice from cisplatin-induced nephrotoxicity, but not Tet2-catalytic-dead mutant. Tet2 KO was associated with a change in metabolic pathways like retinol, arachidonic acid, linolenic acid metabolism, and PPAR signaling pathway in the cisplatin-induced mice model. Tet2 expression is also downregulated in other AKI mice models and clinical samples. Thus, our results indicate that Tet2 has a renal protective effect during AKI by regulating metabolic and inflammatory responses through the PPAR signaling pathway.


1997 ◽  
Vol 52 (4) ◽  
pp. 917-925 ◽  
Author(s):  
Eduardo N. Chini ◽  
Claudia C.S. Chini ◽  
Chad Bolliger ◽  
Michihisa Jougasaki ◽  
Joseph P. Grande ◽  
...  

2021 ◽  
Vol 18 (10) ◽  
pp. 2037-2043
Author(s):  
Hong Zhu ◽  
Dan Ren ◽  
Lan Xiao ◽  
Ting Zhang ◽  
Ruomeng Li ◽  
...  

Purpose: To investigate whether the cytoprotective effect of anthocyanin (Anc) on oxygen-glucose deprivation/reperfusion (OGD/R)-induced cell injury is related to apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. Methods: PC12 cells were pre-treated with various concentrations of Anc (10, 50, and 100 μg/mL) in OGD/R-induced cell injury model. The 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay was used to assess cell viability. Cell apoptosis was measured by lactic acid dehydrogenase (LDH) release assay and flow cytometry. Western blot was employed to determine the protein expressions of BCL-2, BAX, caspase-3, p-ASK1 (Thr845), p-JNK, and p-p38. Results: The results indicate that Anc increased the viability of PC12 cells after OGD/R exposure (p < 0.05), and also efficiently rescued OGD/R-induced apoptosis (p < 0.05). Mechanistic studies showed that these protective roles of Anc are related to the inhibition of ASK1/JNK/p38 signaling pathway. Conclusion: The results indicate Anc protects against OGD/R-induced cell injury by enhancing cell viability and inhibiting cell apoptosis. The underlying mechanism of action is partly via inactivation of ASK1/JNK/p38 signaling pathway. Thus, Anc has promise as a potential natural agent to prevent and treat cerebral ischemia-reperfusion injury.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fang You ◽  
Junyan Cao ◽  
Li Cheng ◽  
Xiaogu Liu ◽  
Li Zeng

Premature ovarian insufficiency (POI) is characterized by the loss of ovarian function before 40 years of age and affects approximately 1% of women worldwide. Caragana sinica is a traditional Miao (a Chinese ethnic minority) medicine that improves ovarian function and follicular development. In the present study, we aimed to investigate the effect of active ingredients of C. sinica on POI and determine underlying mechanisms. Herein, the chemical composition of the C. sinica compound was analyzed using ultra-high-performance liquid chromatography, which identified hyperin (HR) as one of the main ingredients in C. sinica. Then, interaction targets of HR and POI were predicted and analyzed using network pharmacology and bioinformatics. The effect of HR on triptolide (TP)-induced granulosa cell injury was evaluated, and the underlying mechanism was explored based on bioinformatic results. A total of 100 interaction targets for POI and HR were obtained. The protein-protein interaction network of identified interaction targets emphasized the topological importance of AKT1. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that HR might regulate POI by modulating the mechanistic target of rapamycin (mTOR) signaling pathway. In addition, the KEGG graph of the mTOR signaling pathway revealed that AKT phosphorylation inhibits the TSC1/2, while TSC1/2 activation inhibits the expression of mTORC1. The fundamental experiment revealed that HR increased proliferation, progesterone receptor levels, and estradiol levels decreased by TP in KGN cells. Additionally, HR alleviated TP-induced apoptosis and G1/G1 phase arrest in KGN cells. Western blotting demonstrated that HR increased the phosphorylation of AKT and mTORC1 and decreased TSC1 expression in TP-induced KGN cells. Collectively, our findings revealed that HR alleviates TP-induced granulosa cell injury by regulating AKT/TSC1/mTORC1 signaling, providing insight into the treatment of POI.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuyuan Zhang ◽  
Mengguo Han ◽  
Xiaoxue Sun ◽  
Guojun Gao ◽  
Guoying Yu ◽  
...  

The abnormal neurites have long been regarded as the main player contributing to the poor outcome of patients with subarachnoid hemorrhage (SAH). (-)-Eigallocatechin-3-gallate (EGCG), the major biological component of tea catechin, exhibited strong neuroprotective effects against central nervous system diseases; however, the role of EGCG-mediated neurite outgrowth after SAH has not been delineated. Here, the effect of reactive oxygen species (ROS)/integrin β1/FAK/p38 pathway on neurite outgrowth was investigated. As expected, oxyhemoglobin- (OxyHb-) induced excessive ROS level was significantly reduced by EGCG as well as antioxidant N-acetyl-l-cysteine (NAC). Consequently, the expression of integrin β1 was significantly inhibited by EGCG and NAC. Meanwhile, EGCG significantly inhibited the overexpression of phosphorylated FAK and p38 to basal level after SAH. As a result, the abnormal neurites and cell injury were rescued by EGCG, which eventually increased energy generation and neurological score after SAH. These results suggested that EGCG promoted neurite outgrowth after SAH by inhibition of ROS/integrin β1/FAK/p38 signaling pathway. Therefore, EGCG might be a new pharmacological agent that targets neurite outgrowth in SAH therapy.


Sign in / Sign up

Export Citation Format

Share Document