scholarly journals Single particle Raman spectroscopy analysis of the metal–organic framework DUT-8(Ni) switching transition under hydrostatic pressure

2020 ◽  
Vol 56 (59) ◽  
pp. 8269-8272
Author(s):  
Alexander Krylov ◽  
Irena Senkovska ◽  
Sebastian Ehrling ◽  
Mariia Maliuta ◽  
Svetlana Krylova ◽  
...  

According to in situ Raman experiments, in certain pressure ranges open (op) and closed pore (cp) phases coexist in DUT-8(Ni) crystals.

Author(s):  
Alexander S. Krylov ◽  
Irina Dmitrievna Yushina ◽  
Evgenia A. Slyusareva ◽  
Svetlana Krylova ◽  
Alexander Vtyurin ◽  
...  

The behaviours of the open pore (op) and closed pore (cp) phases of flexible [Ni2(ndc)2(dabco)]n (ndc – 2,6-naphthalene dicarboxylate, dabco -- 1,4-diazabicyclo[2.2.2]octane, DUT-8(Ni)) metal-organic framework under high hydrostatic pressure up...


2021 ◽  
Author(s):  
Gregory M. Su ◽  
Han Wang ◽  
Brandon R. Barnett ◽  
Jeffrey R. Long ◽  
David Prendergast ◽  
...  

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.


2021 ◽  
Vol 316 ◽  
pp. 110957
Author(s):  
Mian Zahid Hussain ◽  
Mounib Bahri ◽  
Werner R. Heinz ◽  
Quanli Jia ◽  
Ovidiu Ersen ◽  
...  

Langmuir ◽  
2013 ◽  
Vol 29 (27) ◽  
pp. 8657-8664 ◽  
Author(s):  
Wei-Jin Li ◽  
Shui-Ying Gao ◽  
Tian-Fu Liu ◽  
Li-Wei Han ◽  
Zu-Jin Lin ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4449
Author(s):  
Lijian Sun ◽  
Limei Li ◽  
Xianhui An ◽  
Xueren Qian

The development of photothermal materials with a high light-to-heat conversion capability is essential for the utilization of clean solar energy. In this work, we demonstrate the use of a novel and sustainable concept involving cellulose liquefaction, rapid gelation, in situ synthesis and hot-press drying to convert cellulose and metal–organic framework (Prussian blue) into a stable photothermal bioplastic that can harvest sunlight and convert it into mechanical motion. As expected, the obtained Prussian blue@cellulose bioplastic (PCBP) can effectively absorb sunlight and the surface can be heated up to 70.3 °C under one sun irradiation (100 mW cm−2). As a demonstration of the practicality of PCBP, it was successfully used to drive a Stirling engine motion. Meanwhile, hot-pressing promotes the densification of the structure of PCBP and, therefore, improves the resistance to the penetration of water/non-aqueous liquids. Moreover, PCBP shows good mechanical properties and thermal stability. Given the excellent photothermal performance and environmentally friendly features of photothermal conversion bioplastic, we envisage this sustainable plastic film could play important roles toward diversified applications: a photothermal layer for thermoelectric generator, agricultural films for soil mulching and photothermal antibacterial activity, among others.


Sign in / Sign up

Export Citation Format

Share Document