Vertically-aligned ZnO microrod for high-brightness light source

CrystEngComm ◽  
2020 ◽  
Vol 22 (39) ◽  
pp. 6453-6464
Author(s):  
Changzong Miao ◽  
Mingming Jiang ◽  
Haiying Xu ◽  
Jiaolong Ji ◽  
Caixia Kan

ZnO-microrod array with well-aligned orientation prepared on p-GaN template can be utilized to construct high-performance near-ultraviolet emitters due to desired high optical quality and well-defined geometries.

Author(s):  
Xiao Gong ◽  
Hang Jiang ◽  
Mengyan Cao ◽  
Zhihui Rao ◽  
Xiujian Zhao ◽  
...  

Heavy-metal-free quantum dots (QDs) are promising luminophores for luminescent solar concentrators (LSCs) because of environmental friendliness, which is essential for industrial applications. In order to keep high optical quality and...


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 462
Author(s):  
Ji Xia ◽  
Fuyin Wang ◽  
Chunyan Cao ◽  
Zhengliang Hu ◽  
Heng Yang ◽  
...  

Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass meff~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of . The other nanobeam couples light to excite optical fundamental supermodes at and 1554.464 nm with a larger than 4 × 104. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 . These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements.


2005 ◽  
Vol 86 (7) ◽  
pp. 071917 ◽  
Author(s):  
Y. D. Wang ◽  
S. J. Chua ◽  
S. Tripathy ◽  
M. S. Sander ◽  
P. Chen ◽  
...  

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Joseph R. Wasniewski ◽  
David H. Altman ◽  
Stephen L. Hodson ◽  
Timothy S. Fisher ◽  
Anuradha Bulusu ◽  
...  

The next generation of thermal interface materials (TIMs) are currently being developed to meet the increasing demands of high-powered semiconductor devices. In particular, a variety of nanostructured materials, such as carbon nanotubes (CNTs), are interesting due to their ability to provide low resistance heat transport from device-to-spreader and compliance between materials with dissimilar coefficients of thermal expansion (CTEs), but few application-ready configurations have been produced and tested. Recently, we have undertaken major efforts to develop functional nanothermal interface materials (nTIMs) based on short, vertically aligned CNTs grown on both sides of a thin interposer foil and interfaced with substrate materials via metallic bonding. A high-precision 1D steady-state test facility has been utilized to measure the performance of nTIM samples, and more importantly, to correlate performance to the controllable parameters. In this paper, we describe our material structures and the myriad permutations of parameters that have been investigated in their design. We report these nTIM thermal performance results, which include a best to-date thermal interface resistance measurement of 3.5 mm2 K/W, independent of applied pressure. This value is significantly better than a variety of commercially available, high-performance thermal pads and greases we tested, and compares favorably with the best results reported for CNT-based materials in an application-representative setting.


1996 ◽  
Vol 423 ◽  
Author(s):  
J. C. Roberts ◽  
F. G. Mcintosh ◽  
M. Aumer ◽  
V. Joshkin ◽  
K. S. Boutros ◽  
...  

AbstractThe emission wavelength of the InxGa1−xN ternary system can span from the near ultraviolet through red regions of the visible spectrum. High quality double heterostructures with these InxGa1−xN active layers are essential in the development of efficient optoelectronic devices such as high performance light emitting diodes and laser diodes. We will report on the MOCVD growth and characterization of thick and thin InGaN films. Thick InxGa1−xN films with values of x up to 0.40 have been deposited and their photoluminescence (PL) spectra measured. AlGaN/InGaN/AlGaN double heterostructures (DHs) have been grown that exhibit PL emission in the violet, blue, green and yellow spectral regions, depending on the growth conditions of the thin InGaN active layer. Preliminary results of an AllnGaN/InGaN/AllnGaN DH, with the potential of realizing a near-lattice matched structure, will also be presented.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Changjiu Sun ◽  
Yuanzhi Jiang ◽  
Minghuan Cui ◽  
Lu Qiao ◽  
Junli Wei ◽  
...  

AbstractSerious performance decline arose for perovskite light-emitting diodes (PeLEDs) once the active area was enlarged. Here we investigate the failure mechanism of the widespread active film fabrication method; and ascribe severe phase-segregation to be the reason. We thereby introduce L-Norvaline to construct a COO−-coordinated intermediate phase with low formation enthalpy. The new intermediate phase changes the crystallization pathway, thereby suppressing the phase-segregation. Accordingly, high-quality large-area quasi-2D films with desirable properties are obtained. Based on this, we further rationally adjusted films’ recombination kinetics. We reported a series of highly-efficient green quasi-2D PeLEDs with active areas of 9.0 cm2. The peak EQE of 16.4% is achieved in <n > = 3, represent the most efficient large-area PeLEDs yet. Meanwhile, high brightness device with luminance up to 9.1 × 104 cd m−2 has achieved in <n> = 10 film.


2020 ◽  
Vol 6 (51) ◽  
pp. eabc4904
Author(s):  
David A. Shapiro ◽  
Sergey Babin ◽  
Richard S. Celestre ◽  
Weilun Chao ◽  
Raymond P. Conley ◽  
...  

The analysis of chemical states and morphology in nanomaterials is central to many areas of science. We address this need with an ultrahigh-resolution scanning transmission soft x-ray microscope. Our instrument provides multiple analysis tools in a compact assembly and can achieve few-nanometer spatial resolution and high chemical sensitivity via x-ray ptychography and conventional scanning microscopy. A novel scanning mechanism, coupled to advanced x-ray detectors, a high-brightness x-ray source, and high-performance computing for analysis provide a revolutionary step forward in terms of imaging speed and resolution. We present x-ray microscopy with 8-nm full-period spatial resolution and use this capability in conjunction with operando sample environments and cryogenic imaging, which are now routinely available. Our multimodal approach will find wide use across many fields of science and facilitate correlative analysis of materials with other types of probes.


2021 ◽  
Author(s):  
Mikhail Krivokorytov ◽  
Konstantin Koshelev ◽  
Alexander Vinokhodov ◽  
Oleg Yakushev ◽  
Vladimir Ivanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document