A cytotoxic nitrido-osmium(vi) complex induces caspase-mediated apoptosis in HepG2 cancer cells

2020 ◽  
Vol 49 (47) ◽  
pp. 17173-17182
Author(s):  
Wan-Qiong Huang ◽  
Chuan-Xian Wang ◽  
Tao Liu ◽  
Zi-Xin Li ◽  
Chen Pan ◽  
...  

A structurally fine-tuned nitridoosmium(vi) complex induces HepG2 cell apoptosis through activation of the mitochondrial pathway and death receptor pathway, showing promising in vitro and in vivo anticancer activities.

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
An Yang ◽  
Xin Liu ◽  
Ping Liu ◽  
Yunzhang Feng ◽  
Hongbo Liu ◽  
...  

Abstract Background Long noncoding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1) is aberrantly expressed in multiple cancers and has been verified as an oncogene. However, the underlying mechanism of UCA1 in the development of gastric cancer is not fully understood. In the present study, we aimed to identify how UCA1 promotes gastric cancer development. Methods The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to analyze UCA1 and myosin VI (MYO6) expression in gastric cancer. Western blot and quantitative real-time PCR (QPCR) were performed to test the expression level of the UCA1/miR-145/MYO6 axis in gastric cancer cell lines and tissues. The roles of the UCA1/miR-145/MYO6 axis in gastric cancer in vitro and in vivo were investigated by CCK-8 assay, flow cytometry, siRNAs, immunohistochemistry, and a mouse xenograft model. The targeted relationship among UCA1, miR-145, and MYO6 was predicted using LncBase Predicted v.2 and TargetScan online software, and then verified by luciferase activity assay and RNA immunoprecipitation. Results UCA1 expression was higher but miR-145 expression was lower in gastric cancer cell lines or tissues, compared to the adjacent normal cell line or normal tissues. Function analysis verified that UCA1 promoted cell proliferation and inhibited cell apoptosis in the gastric cancer cells in vitro and in vivo. Mechanistically, UCA1 could bind directly to miR-145, and MYO6 was found to be a downstream target gene of miR-145. miR-145 mimics or MYO6 siRNAs could partly reverse the effect of UCA1 on gastric cancer cells. Conclusions UCA1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-145 to upregulate MYO6 expression in gastric cancer, indicating that the UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


2021 ◽  
Vol 12 (6) ◽  
pp. 8094-8104

A series of novel thiazolidinone-isatin hybrids have been synthesized through the Knoevenagel reaction of isatin derivatives with synthesized thiazolidinone scaffolds and then evaluated for their in vitro antibacterial effects on Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). Cytotoxic effects of the compounds on non-small-cell lung cancer cells (A549 cells), breast epithelial cancer cell line (MCF-7), and prostate cancer cells (PC3 cells) were investigated. Among compounds tested for antibacterial activity, S. aureus was susceptible to compound 7d. The most potent compounds against A549, MCF-7, and PC3 tumor cells were found to be 7g. DAPI staining of all cancer cell lines treated with compound 7g, associated with cell death. We finally confirmed that apoptosis occurred in A549 cells by up-regulated Bax expression and down-regulated Bcl-2 expression from the mitochondrial pathway of apoptosis by using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. Our findings suggested that compound 7g may be a good target in designing cancer therapy strategies.


2020 ◽  
Vol 322 ◽  
pp. 87-97 ◽  
Author(s):  
Manqi Huang ◽  
Yizhou Zhong ◽  
Li Lin ◽  
Boxuan Liang ◽  
Jun Liu ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chengjuan Zhang ◽  
Junxia Zhang ◽  
Qiong Wu ◽  
Benling Xu ◽  
Guoguo Jin ◽  
...  

Abstract Background As a novel type of isothiocyanate derived from radish seeds from cruciferous vegetables, sulforaphene (SFE, 4-methylsufinyl-3-butenyl isothiocyanate) has various important biological effects, such as anti-oxidative and anti-bacterial effects. Recently, sulforaphene has attracted increasing attention for its anti-tumor effects and its ability to suppress the development of multiple tumors through different regulatory mechanisms. However, it has not yet been widely investigated for the treatment of esophageal cancer. Methods We observed an increased apoptosis in esophageal cancer cells on sulforaphene treatment through flow cytometry (FCM) analysis and transmission electron microscopy (TEM). Through mass spectrometry (MS) analysis, we further detected global changes in the proteomes and phosphoproteomes of esophageal cancer cells on sulforaphene treatment. The molecular mechanism of sulforaphene was verified by western blot,the effect and mechanism of SFE on esophageal cancer was further verified by patient-derived xenograft mouse model. Results We identified multiple cellular processes that were changed after sulforaphene treatment by proteomics. We found that sulforaphene could repress the phosphorylation of CREB through MSK2, leading to suppression of Bcl-2 and further promoted cell apoptosis. Additionally, we confirmed that sulforaphene induces tumor cell apoptosis in mice. Interestingly, we also observed the obvious inhibition of cell migration and invasion caused by sulforaphene treatment by inhibiting the expression of cadherin, indicating the complex effects of sulforaphene on the development of esophageal cancer. Conclusions Our data demonstrated that sulforaphene induced cell apoptosis and inhibits the invasion of esophageal cancer through a mechanism involving the inhibition of the MSK2–CREB–Bcl2 and cadherin pathway. Sulforaphene could therefore serve as a promising anti-tumor drug for the treatment of esophageal cancer.


Sign in / Sign up

Export Citation Format

Share Document