Tannic acid–thioctic acid hydrogel: a novel injectable supramolecular adhesive gel for wound healing

2021 ◽  
Author(s):  
Chen Chen ◽  
Xiao Yang ◽  
Shu-jing Li ◽  
Chao Zhang ◽  
Yu-ning Ma ◽  
...  

Thiyl radical–polyphenol Michael addition was utilized to prepare tannic acid–thioctic acid (TATA) hydrogel under mild condition. It was also found that this hydrogel could be used as wound adhesive with good biocompatibility.

RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 14809-14818 ◽  
Author(s):  
Gang Xu ◽  
Dicky Pranantyo ◽  
Bin Zhang ◽  
Liqun Xu ◽  
Koon-Gee Neoh ◽  
...  

Tannic acid and parasin I were deposited alternatively on stainless steel surface by Michael addition/Schiff base reaction-enabled layer-by-layer deposition technique.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ling Yu ◽  
Shubin Dou ◽  
Jinghan Ma ◽  
Qiang Gong ◽  
Mogen Zhang ◽  
...  

Antimicrobial peptides (AMPs) are a new class of promising antibacterial agents. We prepared electrospinning chitosan (CS)-polyethylene oxide (PEO) nanofiber membranes containing different concentrations of an antibacterial peptide NP10. The average diameter of nanofibers increased with the total concentration of NP10. The FTIR shows that all the peaks of CS-PEO nanofiber membranes with different concentrations of NP10 were almost the same as those of pure CS-PEO nanofiber membranes, and only the peak intensity changes. Adding NP10 can improve the thermal stability of CS-PEO nanofiber membranes. In the in vitro release experiment, NP10 was released from the CS-PEO-0.5%NP10 nanofiber membrane in a burst first and then slowly and continuously. Simultaneously, the CS-PEO-NP10 nanofiber membrane had good antibacterial activity against Escherichia coli and Staphylococcus aureus and good biocompatibility. In animal wound healing experiments, CS-PEO-0.5%NP10 nanofiber membrane had advantages over gauze and CS-PEO nanofiber membrane in wound healing. These properties may provide a choice for the clinical application of AMPs and treatment of wound infections.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Ying Zhao ◽  
Yihui Qiu ◽  
Huanhuan Wang ◽  
Yu Chen ◽  
Shaohua Jin ◽  
...  

Renewable polymers have attracted considerable attentions in the last two decades, predominantly due to their environmentally friendly properties, renewability, good biocompatibility, biodegradability, bioactivity, and modifiability. The nanofibers prepared from the renewable polymers can combine the excellent properties of the renewable polymer and nanofiber, such as high specific surface area, high porosity, excellent performances in cell adhesion, migration, proliferation, differentiation, and the analogous physical properties of extracellular matrix. They have been widely used in the fields of wound dressing to promote the wound healing, hemostasis, skin regeneration, and treatment of diabetic ulcers. In the present review, the different methods to prepare the nanofibers from the renewable polymers were introduced. Then the recent progress on preparation and properties of the nanofibers from different renewable polymers or their composites were reviewed; the application of them in the fields of wound dressing was emphasized.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2286 ◽  
Author(s):  
Sibusiso Alven ◽  
Xhamla Nqoro ◽  
Blessing Atim Aderibigbe

Some of the currently used wound dressings have interesting features such as excellent porosity, good water-absorbing capacity, moderate water vapor transmission rate, high drug loading efficiency, and good capability to provide a moist environment, but they are limited in terms of antimicrobial properties. Their inability to protect the wound from microbial invasion results in wound exposure to microbial infections, resulting in a delayed wound healing process. Furthermore, some wound dressings are loaded with synthetic antibiotics that can cause adverse side effects on the patients. Natural-based compounds exhibit unique features such as good biocompatibility, reduced toxicity, etc. Curcumin, one such natural-based compound, has demonstrated several biological activities such as anticancer, antibacterial and antioxidant properties. Its good antibacterial and antioxidant activity make it beneficial for the treatment of wounds. Several researchers have developed different types of polymer-based wound dressings which were loaded with curcumin. These wound dressings displayed excellent features such as good biocompatibility, induction of skin regeneration, accelerated wound healing processes and excellent antioxidant and antibacterial activity. This review will be focused on the in vitro and in vivo therapeutic outcomes of wound dressings loaded with curcumin.


RSC Advances ◽  
2016 ◽  
Vol 6 (21) ◽  
pp. 17188-17195 ◽  
Author(s):  
Kaiqin Xiong ◽  
Pengkai Qi ◽  
Ying Yang ◽  
Xiangyang Li ◽  
Hua Qiu ◽  
...  

Biomolecules like VEGF with thiol or amine groups can easily be covalently immobilized onto a Tannic Acid functional plasma polymerized allylamine surface rich in quinone groups in a mild alkali buffer solution based on Schiff base or Michael addition reactions.


2012 ◽  
Vol 101B (4) ◽  
pp. 560-567 ◽  
Author(s):  
Venkatachalam Natarajan ◽  
Natarajan Krithica ◽  
Balaraman Madhan ◽  
Praveen Kumar Sehgal

2021 ◽  
Author(s):  
Miquel Antich-Rosselló ◽  
Marta Munar-Bestard ◽  
Maria Antònia Forteza-Genestra ◽  
Javier Calvo ◽  
Antoni Gayà ◽  
...  

Abstract Purpose: Gingival regeneration aims at restoring the architecture and functionality of oral damaged tissue. Different biomaterials or biological materials have been tested for tissue repair, such as platelet concentrates like platelet lysate (PL). In this article, the use of extracellular vesicles (EVs) derived from PL and their combination with hyaluronic acid biomaterials (HA) in wound healing was investigated.Methods: EVs were isolated by size exclusion chromatography from PL. In addition, HA gels were formulated with PL or EVs. EVs or HA combined with EVs (HA-EVs) were tested in vitro for biocompatibility (LDH activity and metabolic activity) and by a wound healing assay and gene expression analysis.Results: EVs and EVs-HA treatments were biocompatible and showed an increase in wound healing compared to control. Moreover, changes in gene expression related to extracellular matrix remodeling were observed in gingival keratinocytes and gingival fibroblasts after the treatment with EVs.Conclusion: EVs can be combined with HA biomaterials, showing good biocompatibility and preserving their activity and functionality. Therefore, platelet derived EVs emerge as promising candidates for oral regeneration with the possibility to combine them with biomaterials in order to enhance their application in clinical use.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yangyang Liu ◽  
Shurui Song ◽  
Shuangyong Liu ◽  
Xiaoyan Zhu ◽  
Peige Wang

Traditional dressings used for wound repair, such as gauze, have shortcomings; for example, they cannot provide a suitable microenvironment for wound recovery. Therefore, it is necessary to find a better dressing to overcome shortcomings. Hydrogel provides a suitable wet environment, has good biocompatibility, and has a strong swelling rate to absorb exudate. Nanomaterial in hydrogels has been used to improve their performance and overcome the shortcomings of current hydrogel dressings. Hydrogel dressing can also be loaded with nanodrug particles to exert a better therapeutic effect than conventional drugs and to make the dressing more practical. This article reviews the application of nanotechnology in hydrogels related to wound healing and discusses the application prospects of nanohydrogels. After searching for hydrogel articles related to wound healing, we found that nanomaterial can not only enhance the mechanical strength, antibacterial properties, and adhesion of hydrogels but also achieve sustained drug release. From the perspective of clinical application, these characteristics are significant for wound healing. The combination of nanomaterial and hydrogel is an ideal dressing with broad application prospects for wound healing in the future.


2019 ◽  
Vol 8 (7) ◽  
pp. 341-354 ◽  
Author(s):  
Yaqin Chen ◽  
Lvbo Tian ◽  
Fengyu Yang ◽  
Wenzhi Tong ◽  
Renyong Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document