scholarly journals Complementary techniques to analyse pericellular matrix formation by human MSC within hyaluronic acid hydrogels

2020 ◽  
Vol 1 (8) ◽  
pp. 2888-2896
Author(s):  
Christoph Salzlechner ◽  
Anders Runge Walther ◽  
Sophie Schell ◽  
Nicholas Groth Merrild ◽  
Tabasom Haghighi ◽  
...  

Hydrogels are used widely for cell encapsulation to mimic the native ECM. Here, we characterise and visualise the matrix secreted by encapsulated cells by combining fluorescent non-canonical amino acid tagging with confocal Raman spectral imaging.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 794 ◽  
Author(s):  
Su Jeong Lee ◽  
Ji Min Seok ◽  
Jun Hee Lee ◽  
Jaejong Lee ◽  
Wan Doo Kim ◽  
...  

Bio-ink properties have been extensively studied for use in the three-dimensional (3D) bio-printing process for tissue engineering applications. In this study, we developed a method to synthesize bio-ink using hyaluronic acid (HA) and sodium alginate (SA) without employing the chemical crosslinking agents of HA to 30% (w/v). Furthermore, we evaluated the properties of the obtained bio-inks to gauge their suitability in bio-printing, primarily focusing on their viscosity, printability, and shrinkage properties. Furthermore, the bio-ink encapsulating the cells (NIH3T3 fibroblast cell line) was characterized using a live/dead assay and WST-1 to assess the biocompatibility. It was inferred from the results that the blended hydrogel was successfully printed for all groups with viscosities of 883 Pa∙s (HA, 0% w/v), 1211 Pa∙s (HA, 10% w/v), and 1525 Pa∙s, (HA, 30% w/v) at a 0.1 s−1 shear rate. Their structures exhibited no significant shrinkage after CaCl2 crosslinking and maintained their integrity during the culture periods. The relative proliferation rate of the encapsulated cells in the HA/SA blended bio-ink was 70% higher than the SA-only bio-ink after the fourth day. These results suggest that the 3D printable HA/SA hydrogel could be used as the bio-ink for tissue engineering applications.


1987 ◽  
Vol 7 (1) ◽  
pp. 294-304 ◽  
Author(s):  
D Pilgrim ◽  
E T Young

Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.


1989 ◽  
Vol 170 (1) ◽  
pp. 163-176 ◽  
Author(s):  
H F Rosenberg ◽  
S J Ackerman ◽  
D G Tenen

We have isolated a 725-bp full-length cDNA clone for the human eosinophil cationic protein (ECP). ECP is a small, basic protein found in the matrix of the eosinophil's large specific granule that has cytotoxic, helminthotoxic, and ribonuclease activity, and is a member of the ribonuclease multigene family. The cDNA sequence shows 89% sequence identity with that reported for the related granule protein, eosinophil-derived neurotoxin (EDN). The open reading frame encodes a previously unidentified 27-amino acid leader sequence preceding a 133-residue mature ECP polypeptide with a molecular mass of 15.6 kD. The encoded amino acid sequence of ECP shows 66% identity to that of EDN and 31% identity to that of human pancreatic ribonuclease, including conservation of the essential structural cysteine and cataytic lysine and histidine residues. mRNA for ECP was detected in eosinophil-enriched peripheral granulocytes and in a subclone of the promyelocytic leukemia line, HL-60, induced toward eosinophilic differentiation with IL-5. No ECP mRNA was detected in uninduced HL-60 cells, or in HL-60 cells induced toward monocytic differentiation with vitamin D3 or toward neutrophilic differentiation with DMSO. In contrast, mRNA for EDN was detected in uninduced HL-60 cells and was upregulated in HL-60 cells induced with DMSO. Despite similarities in sequence and cellular localization, these results suggest that ECP and EDN are subject to different regulatory mechanisms.


Virology ◽  
2009 ◽  
Vol 384 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Shufang Fan ◽  
Guohua Deng ◽  
Jiasheng Song ◽  
Guobin Tian ◽  
Yongbing Suo ◽  
...  

2015 ◽  
Vol 43 (16) ◽  
pp. 8111-8122 ◽  
Author(s):  
Takahito Mukai ◽  
Atsushi Yamaguchi ◽  
Kazumasa Ohtake ◽  
Mihoko Takahashi ◽  
Akiko Hayashi ◽  
...  

Author(s):  
Ilmira R. Gilmutdinova ◽  
Elena Kostromina ◽  
Regina D. Yakupova ◽  
Petr S. Eremin

The development of new biomaterials whose characteristics are as close as possible to the properties of living human tissues is one of the most promising areas of regenerative medicine. This work aimed at creating a bioplastic material based on collagen, elastin and hyaluronic acid and studying its structure and properties to assess the prospects for further use in clinical practice. Bioplastic material was obtained by mixing collagen, hyaluronic acid and elastin in predetermined proportions with distilled water. We treated the material with photochemical crosslinking to stabilize biofilm in a liquid medium and form a nanostructured scaffold. A commercial human skin fibroblast cell culture was used to assess the biomaterial cytotoxicity and biocompatibility. The visualization and studies of the biomaterial structure were performed using light and scanning electron microscopy. It has been shown that the obtained biomaterial is characterized by high resilience; it has also a high porosity. The co-culturing of the bioplastic material and human fibroblasts did not reveal any of its cytotoxic effects on cells in culture. It was shown that the biomaterial samples could maintain physical properties in the culture medium for more than 10 days, while the destruction of the matrix was observed 3–4 weeks after the beginning of incubation. Thus, the created biomaterial can be used on damaged skin areas due to its physical properties and structure. The use of the developed biomaterial provides effective conditions for good cell proliferation, which allows us to consider it as a promising wound cover for use in clinical practice.


2009 ◽  
Vol 83 (19) ◽  
pp. 9875-9889 ◽  
Author(s):  
Elodie Beaumont ◽  
Daniela Vendrame ◽  
Bernard Verrier ◽  
Emmanuelle Roch ◽  
François Biron ◽  
...  

ABSTRACT Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.


Synthesis ◽  
2019 ◽  
Vol 51 (05) ◽  
pp. 1273-1283 ◽  
Author(s):  
Simon Baldauf ◽  
Jeffrey Bode

The α-ketoacid–hydroxylamine (KAHA) ligation allows the coupling of unprotected peptide segments. The most widely used variant employs a 5-membered cyclic hydroxylamine that forms a homoserine ester as the primary ligation product. While very effective, monomers that give canonical amino acid residues are in high demand. In order to preserve the stability and reactivity of cyclic hydroxylamines, but form a canonical amino acid residue upon ligation, we sought to prepare cyclic derivatives of serine hydroxylamine. An evaluation of several cyclization strategies led to cyclobutanone ketals as the leading structures. The preparation, stability, and amide-forming ligation of these serine-derived ketals are described.


Sign in / Sign up

Export Citation Format

Share Document