On synapse intelligence emulated in a self-formed artificial synaptic network

2020 ◽  
Vol 7 (11) ◽  
pp. 2970-2977
Author(s):  
Bharath Bannur ◽  
Giridhar U. Kulkarni

An artificial synaptic network based on a self-formed Ag film, resembling the biological neural network, is realized for applications in neuromorphic artificial intelligence.

2020 ◽  
Vol 2 (3(September-December)) ◽  
pp. e642020
Author(s):  
Ricardo Santos De Oliveira

The human brain contains around 86 billion nerve cells and about as many glial cells [1]. In addition, there are about 100 trillion connections between the nerve cells alone. While mapping all the connections of a human brain remains out of reach, scientists have started to address the problem on a smaller scale. The term artificial neural networks (ANNs or simply neural networks (NNs), encompassing a family of nonlinear computational methods that, at least in the early stage of their development, were inspired by the functioning of the human brain. Indeed, the first ANNs were nothing more than integrated circuits devised to reproduce and understand the transmission of nerve stimuli and signals in the human central nervous system [2]. The correct way of doing it is to the first study human behavior. The human brain has a biological neural network that has billions of interconnections. As the brain learns, these connections are either formed, changed or removed, similar to how an artificial neural network adjusts its weights to account for a new training example. This complexity is the reason why it is said that practice makes one perfect since a greater number of learning instances allow the biological neural network to become better at whatever it is doing. Depending upon the stimulus, only a certain subset of neurons are activated in the nervous system. Recently, Moreau et al., [3] published an interesting paper studying how artificial intelligence can help doctors and patients with meningiomas make better treatment decisions, according to a new study. They demonstrated that their models were capable of predicting meaningful individual-specific clinical outcome variables and show good generalizability across the Surveillance, Epidemiology, and End Results (SEER) database to predict meningioma malignancy and survival after specific treatments. Statistical learning models were trained and validated on 62,844 patients from the SEER database and a model scoring for the malignancy model was performed using a series of metrics. A free smartphone and web application were also provided for readers to access and test the predictive models (www.meningioma.app). The use of artificial intelligence techniques is gradually bringing efficient theoretical solutions to a large number of real-world clinical problems related to the brain (4). Specifically, recently, thanks to the accumulation of relevant data and the development of increasingly effective algorithms, it has been possible to significantly increase the understanding of complex brain mechanisms. The researchers' efforts are creating increasingly sophisticated and interpretable algorithms, which could favor a more intensive use of “intelligent” technologies in practical clinical contexts. Brain and machine working together will improve the power of these methods to make individual-patient predictions could lead to improved diagnosis, patient counseling, and outcomes.


2020 ◽  
pp. 1-11
Author(s):  
Wenjuan Ma ◽  
Xuesi Zhao ◽  
Yuxiu Guo

The application of artificial intelligence and machine learning algorithms in education reform is an inevitable trend of teaching development. In order to improve the teaching intelligence, this paper builds an auxiliary teaching system based on computer artificial intelligence and neural network based on the traditional teaching model. Moreover, in this paper, the optimization strategy is adopted in the TLBO algorithm to reduce the running time of the algorithm, and the extracurricular learning mechanism is introduced to increase the adjustable parameters, which is conducive to the algorithm jumping out of the local optimum. In addition, in this paper, the crowding factor in the fish school algorithm is used to define the degree or restraint of teachers’ control over students. At the same time, students in the crowded range gather near the teacher, and some students who are difficult to restrain perform the following behavior to follow the top students. Finally, this study builds a model based on actual needs, and designs a control experiment to verify the system performance. The results show that the system constructed in this paper has good performance and can provide a theoretical reference for related research.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


2019 ◽  
Vol 17 (1) ◽  
pp. 69-76
Author(s):  
Mohammad Shiddiq Ghozali

Perkembangan Teknologi Informasi dan Komunikasi begitu pesat di zaman sekarang ini. Diikuti pula dengan perkembangan di bidang Artificial Intelligence (AI) atau Kecerdasan Buatan. Di Indonesia sendiri masih belum begitu populer dikalangan masyarakat akan tetapi perusahaan-perusahaan IT berlomba-lomba menciptakan inovasi dibidang Kecerdasan Buatan dan penerapan Kecerdasan Buatan disegala aspek kehidupan. Contoh kasus di Automated Teller Machine (ATM), seringkali terjadi kejahatan di ATM seperti pengintaian nomor pin, skimming, lebanese loop dan kejahatan lainnya. Walaupun di ATM sudah terdapat CCTV akan tetapi penjahat menggunakan alat bantu untuk menutupi wajahnya seperti helm, topi, masker dan kacamata hitam. Biasanya didepan pintu masuk ATM terpampang larangan untuk tidak menggunakan helm, topi, masker dan kacamata hitam serta tidak membawa rokok. Akan tetapi larangan itu masih tetap ada yang melanggar, dikarenakan tidak ada tindak lanjut ketika seseorang menggunakan benda-benda yang dilarang dibawa kedalam ATM. Oleh karena itu penulis membuat sistem pendeteksi obyek di bidang Kecerdasan Buatan untuk mendeteksi benda-benda yang dilarang digunakan ketika berada di ATM. Salah satu metode yang digunakan untuk menciptakan Object Detection yaitu You Only Look Once (YOLO). Implementasi ide ini tersedia pada DARKNET (open source neural network). Cara kerja YOLO yaitu dengan melihat seluruh gambar sekali, kemudian melewati jaringan saraf sekali langsung mendeteksi object yang ada. Oleh karena itu disebut You Only Look Once (YOLO). Pada penelitian ini, penulis membuat sistem yang masih dalam bentuk pengembangan, sehingga menjalankannya masih menggunakan command prompt. Keywords : Automated Teller Machine (ATM), Kecerdasan Buatan, Pendeteksi Obyek, You Only Look Once (YOLO)  


2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


Author(s):  
Daniel Overhoff ◽  
Peter Kohlmann ◽  
Alex Frydrychowicz ◽  
Sergios Gatidis ◽  
Christian Loewe ◽  
...  

Purpose The DRG-ÖRG IRP (Deutsche Röntgengesellschaft-Österreichische Röntgengesellschaft international radiomics platform) represents a web-/cloud-based radiomics platform based on a public-private partnership. It offers the possibility of data sharing, annotation, validation and certification in the field of artificial intelligence, radiomics analysis, and integrated diagnostics. In a first proof-of-concept study, automated myocardial segmentation and automated myocardial late gadolinum enhancement (LGE) detection using radiomic image features will be evaluated for myocarditis data sets. Materials and Methods The DRG-ÖRP IRP can be used to create quality-assured, structured image data in combination with clinical data and subsequent integrated data analysis and is characterized by the following performance criteria: Possibility of using multicentric networked data, automatically calculated quality parameters, processing of annotation tasks, contour recognition using conventional and artificial intelligence methods and the possibility of targeted integration of algorithms. In a first study, a neural network pre-trained using cardiac CINE data sets was evaluated for segmentation of PSIR data sets. In a second step, radiomic features were applied for segmental detection of LGE of the same data sets, which were provided multicenter via the IRP. Results First results show the advantages (data transparency, reliability, broad involvement of all members, continuous evolution as well as validation and certification) of this platform-based approach. In the proof-of-concept study, the neural network demonstrated a Dice coefficient of 0.813 compared to the expert's segmentation of the myocardium. In the segment-based myocardial LGE detection, the AUC was 0.73 and 0.79 after exclusion of segments with uncertain annotation.The evaluation and provision of the data takes place at the IRP, taking into account the FAT (fairness, accountability, transparency) and FAIR (findable, accessible, interoperable, reusable) criteria. Conclusion It could be shown that the DRG-ÖRP IRP can be used as a crystallization point for the generation of further individual and joint projects. The execution of quantitative analyses with artificial intelligence methods is greatly facilitated by the platform approach of the DRG-ÖRP IRP, since pre-trained neural networks can be integrated and scientific groups can be networked.In a first proof-of-concept study on automated segmentation of the myocardium and automated myocardial LGE detection, these advantages were successfully applied.Our study shows that with the DRG-ÖRP IRP, strategic goals can be implemented in an interdisciplinary way, that concrete proof-of-concept examples can be demonstrated, and that a large number of individual and joint projects can be realized in a participatory way involving all groups. Key Points:  Citation Format


2021 ◽  
Vol 93 (6) ◽  
pp. AB190-AB191
Author(s):  
João Afonso ◽  
Miguel M. Saraiva ◽  
Helder Cardoso ◽  
João Ferreira ◽  
Patrícia Andrade ◽  
...  

BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e046265
Author(s):  
Shotaro Doki ◽  
Shinichiro Sasahara ◽  
Daisuke Hori ◽  
Yuichi Oi ◽  
Tsukasa Takahashi ◽  
...  

ObjectivesPsychological distress is a worldwide problem and a serious problem that needs to be addressed in the field of occupational health. This study aimed to use artificial intelligence (AI) to predict psychological distress among workers using sociodemographic, lifestyle and sleep factors, not subjective information such as mood and emotion, and to examine the performance of the AI models through a comparison with psychiatrists.DesignCross-sectional study.SettingWe conducted a survey on psychological distress and living conditions among workers. An AI model for predicting psychological distress was created and then the results were compared in terms of accuracy with predictions made by psychiatrists.ParticipantsAn AI model of the neural network and six psychiatrists.Primary outcomeThe accuracies of the AI model and psychiatrists for predicting psychological distress.MethodsIn total, data from 7251 workers were analysed to predict moderate and severe psychological distress. An AI model of the neural network was created and accuracy, sensitivity and specificity were calculated. Six psychiatrists used the same data as the AI model to predict psychological distress and conduct a comparison with the AI model.ResultsThe accuracies of the AI model and psychiatrists for predicting moderate psychological distress were 65.2% and 64.4%, respectively, showing no significant difference. The accuracies of the AI model and psychiatrists for predicting severe psychological distress were 89.9% and 85.5%, respectively, indicating that the AI model had significantly higher accuracy.ConclusionsA machine learning model was successfully developed to screen workers with depressed mood. The explanatory variables used for the predictions did not directly ask about mood. Therefore, this newly developed model appears to be able to predict psychological distress among workers easily, regardless of their subjective views.


Sign in / Sign up

Export Citation Format

Share Document