scholarly journals About the transformation of low Tm into high Tm poly(l-lactide)s by annealing under the influence of transesterification catalysts

RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2872-2883
Author(s):  
Steffen M. Weidner ◽  
Andreas Meyer ◽  
Saber Chatti ◽  
Hans R. Kricheldorf

Cyclic polylactides were prepared in bulk at 170 °C, crystallized at 120 °C and then annealed at temperatures between 130 and 170 °C with variation of catalyst, catalyst concentration and annealing time.

Author(s):  
Y. J. Kim ◽  
D. M. Henderson

Natural Amelia albite (Ab99.3An0.1Or0.6) annealed at 1073° and 924°C for various periods up to 140 days has been studied by NMR. TEM studies of the same sample revealed a distinct tweed microstructure in some samples annealed at both 1073°C and 924°C. On the whole, the quasi-regular tweed has a periodicity of 100 - 200 Å in both directions, one nearly normal to b* and the other approximately parallel to b*, which gives rise to two-directional streaking in SADP’s (Fig. 1 and 2). However, there are some differences in the tweed structure developed on annealing at 1073°C and at 924°C in albite.Albite samples annealed at 1073° show a systematic trend in their development of tweed structures: the regularity, periodicity, and frequency of occurrence increase with annealing time during the first 3 days, and then decrease gradually until no tweed microstructures are seen in samples annealed for more than 15 days. The tweed structure proceeds locally to form one-directional twin-like microstructures.


2019 ◽  
Vol 1 (3) ◽  
pp. 68
Author(s):  
Puguh Setyopratomo ◽  
Edy Purwanto ◽  
H. Yefrico ◽  
H. Yefrico

The synthesis of glycerol mono oleic from oleic acid and glycerol is classified as an esterification reaction. This research is aimed to study the influent of reaction temperature and catalyst concentration on reaction conversion. During the experiment the temperature of reaction mixture was varied as 110 oC, 130 oC, and 150 oC, while the catalyst concentration of 1%, 3 %, and 5% was used. The batch experiment was conducted in a glass reactor equipped with termometer, agitator, and reflux condensor. The oleic acid – glycerol mol ratio of 1 : 2 was used as a mixture feed. To maintain the reaction temperature at certain level, the oil bath was used. After the temperature of reaction mixture was reached the expected value, then H2SO4 catalyst was added to the reactor.  To measure the extent of the reaction, every 30 minutes the sample was drawn out from the reactor vessel. The sample analysis include acid number, density, and viscosity measurement. From this research the optimum condition which is the temperature of reaction of 150 oC and 1% catalyst concentration was obtained. At this optimum condition the convertion reach 86% and the analysis of other physical properties of the product show the acid number of 24.12, the density of 0.922 g/cc, and the viscosity of 118.4 cp.


2016 ◽  
Vol 10 (2) ◽  
pp. 119-126
Author(s):  
Mahlinda Mahlinda ◽  
Fitriana Djafar

The main purpose of this research was to observer effect co-solvent type (n-Hexane, chloroform and without co-solvent)  toward yield and quality of biodiesel via in situ transesterification process using microwave irradiation. The process was studied at microwave power 450 watt, reaction time 4 minutes, methanol to seed ratio 25:1 and catalyst concentration 5%. The physicochemical parameters of the biodiesel produced such as viscosity, density and acid value were analysed and compared with the SNI 7182-2012 standard. The experimental result showed the maximum yield biodiesel 78,32% obtained by using co-solvent chloroform.Test result of physicochemical properties (viscosity, density and acid value) of biodiesel products using co solvent n-Hexane, chloroform and without co solvent showed that these products conform to the SNI 7182-2012 standars. The type of co-solvent only affectedon biodiesel yield dan not affected on biodiesel quality (viscosity, density and acid value).  ABSTRAKTujuan penelitian ini adalah untuk mempelajari pengaruh jenis co-solvent (n-Hexane, chloroform dan tanpa co-solvent) terhadap rendemen dan mutu biodiesel secara trasesterifikasi in situ menggunakan radiasi gelombang mikro. Proses dilakukan pada daya gelombang mikro 450 watt, waktu reaksi 4 menit, perbandingan berat metanol terhadap bahan baku 25:1 dan jumlah katalis 5%. Parameter fisiko kimia dari produk biodiesel seperti viskositas, densitas dan angka asam di analisa dan dibandingkan dengan standar SNI 7182-2012 tentang biodiesel. Hasil penelitian menunjukkan rendemen maksimum biodiesel sebesar 78,32% diperoleh dengan menggunakan co-solvent chloroform. Hasil pengujian  karakteristik fisiko kimia (viskositas, densitas dan angka asam) dari produk biodiesel menggunakan co-solvent n-Hexane, chloroform dan tanpa co-solvent menunjukkan bahwa semua parameter ini masih memenuhi standar SNI 1782-2012 tentang biodiesel. Jenis co-solvent hanya berpengaruh pada rendemen biodiesel dan tidak berpengaruh terhadap mutu biodiesel (viskositas, densitas dan bilangan asam).Kata kunci: co-solvent, in situ transesterifikasi, microwave, rendemen, mutu   


1985 ◽  
Vol 50 (4) ◽  
pp. 845-853 ◽  
Author(s):  
Miloslav Šorm ◽  
Miloslav Procházka ◽  
Jaroslav Kálal

The course of hydrolysis of an ester, 4-acetoxy-3-nitrobenzoic acid catalyzed with poly(1-methyl-3-allylimidazolium bromide) (IIa), poly[l-methyl-3-(2-propinyl)imidazolium chloride] (IIb) and poly[l-methyl-3-(2-methacryloyloxyethyl)imidazolium bromide] (IIc) in a 28.5% aqueous ethanol was investigated as a function of pH and compared with low-molecular weight models, viz., l-methyl-3-alkylimidazolium bromides (the alkyl group being methyl, propyl, and hexyl, resp). Polymers IIb, IIc possessed a higher activity at pH above 9, while the models were more active at a lower pH with a maximum at pH 7.67. The catalytic activity at the higher pH is attributed to an attack by the OH- group, while at the lower pH it is assigned to a direct attack of water on the substrate. The rate of hydrolysis of 4-acetoxy-3-nitrobenzoic acid is proportional to the catalyst concentration [IIc] and proceeds as a first-order reaction. The hydrolysis depends on the composition of the solvent and was highest at 28.5% (vol.) of ethanol in water. The hydrolysis of a neutral ester, 4-nitrophenyl acetate, was not accelerated by IIc.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Kaushal K. Kesharpu ◽  
Vladislav D. Kochev ◽  
Pavel D. Grigoriev

In highly anisotropic organic superconductor (TMTSF)2ClO4, superconducting (SC) phase coexists with metallic and spin-density wave phases in the form of domains. Using the Maxwell-Garnett approximation (MGA), we calculate the volume ratio and estimate the shape of these embedded SC domains from resistivity data at various temperature and anion disorder, controlled by the cooling rate or annealing time of (TMTSF)2ClO4 samples. We found that the variation of cooling rate and of annealing time affect differently the shape of SC domains. In all cases the SC domains have oblate shape, being the shortest along the interlayer z-axis. This contradicts the widely assumed filamentary superconductivity along the z-axis, used to explain the anisotropic superconductivity onset. We show that anisotropic resistivity drop at the SC onset can be described by the analytical MGA theory with anisotropic background resistance, while the anisotropic Tc can be explained by considering a finite size and flat shape of the samples. Due to a flat/needle sample shape, the probability of percolation via SC domains is the highest along the shortest sample dimension (z-axis), and the lowest along the sample length (x-axis). Our theory can be applied to other heterogeneous superconductors, where the size d of SC domains is much larger than the SC coherence length ξ, e.g., cuprates, iron-based or organic superconductors. It is also applicable when the spin/charge-density wave domains are embedded inside a metallic background, or vice versa.


2021 ◽  
Vol 11 (10) ◽  
pp. 4641
Author(s):  
Jiangfei Lou ◽  
Jinfang Zhang ◽  
Dan Wang ◽  
Xuerong Fan

In the anti-wrinkle finishing of cotton fabrics, the decreased dyeability of the finished fabrics has always been a difficult problem. A new anti-wrinkle finishing mode was developed to solve this problem by changing the finishing sequence of fabric dyeing and anti-wrinkle. In this research, the partial oxidization of raffinose with sodium periodate generated multiple aldehydes, which acted as multifunctional cross-linkers and endowed cotton fabrics with anti-wrinkle and hydrophilic properties. The structural characteristics of oxyRa were analyzed by FTIR and 13C-NMR. Through response surface methodology (RSM), the finishing model of oxyRa was established from the influencing factors of catalyst concentration, pH, curing temperature and time, and the optimized finishing process: the catalyst concentration was 20.12 g/L, pH was 4.32, curing temperature was 150 °C and curing time was 120 s. Under this condition, the predicted wrinkle recovery angle (WRA) of the finished fabric was up to 249.76°, Tensile strength (TS) was 75.62%, Whiteness index (WI) was 70.69. Importantly, comparing the anti-wrinkle and dyeing performance of the fabric with anti-wrinkle and then dyeing and anti-wrinkle after dyeing, the oxyRa-treated fabrics showed better dyeing properties compared with previously reported dimethyldihydroxyethylene urea (DMDHEU), glutaraldehyde (GA), and 1,2,3,4-butanetetracarboxylic acid (BTCA). Analysis of the combined mechanism of different finishing agents and cellulose, demonstrated the reason why oxyRa can be used to change the order of dyeing and anti-wrinkle finishing.


2012 ◽  
pp. 23-32
Author(s):  
Norzita Ngadi ◽  
Hajar Alias ◽  
Siti Aktar Ishak

In this study, production of biodiesel from new and used palm and soybean oils was carried out using a transesterification method. The effect of catalyst amount used towards the percentage yield, soap content and heat of combustion of the biodiesel produced was investigated. The soap content and heat combustion of the biodiesel were determined using titration (AOCS Cc-95) and heat calorimeter bomb (ASTM D240-09), respectively. The results showed that catalyst concentration of 0.5 w/w% gave the best result in terms of yield of biodiesel produced from both palm and soybean oils. However, the quality of biodiesel (i.e. soap content and heat of combustion) produced from palm and soybean oils behaved differently towards catalyst concentration. Overall, both oils (palm and soybean), either new or used oil apparently showed no significant difference in term of yield or qualities of biodiesel produced. This indicates that the used oil has high potential as an economical and practical future source of biodiesel.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Sri Krishna Murthy ◽  
Ankit Goyal ◽  
N. Rajasekar ◽  
Kapil Pareek ◽  
Thoi Trung Nguyen ◽  
...  

The present study undertakes the research problem on the optimization of production of biodiesel as a renewable energy resource from the transesterification of soybean oil and ethanol. Predictive modelling and surface analysis techniques were applied based on the artificial neural network search algorithm to correlate the yield of ethyl ester and glycerol and the input parameters. The formulated models accurately predicted the yield of the products with a high coefficient of determination. When the reaction time is low, the ester yield decreases with an increase in temperature and the maximum yield of obtained biodiesel at a very low value of time of reaction and temperature. Plots based on parametric and sensitivity analysis reveals that the yield of ethyl ester can be maximized and that of glycerol minimized at an integrated condition with lower ethanol/oil molar ratio, higher temperature value, higher catalyst concentration value, and longer time of reaction. The global sensitivity analysis reveals that the catalyst concentration and temperature of the reaction influence the yield of ethyl ester the most. In addition, an optimal ethyl ester yield of 95% can be achieved at specific input conditions. Moreover, according to the results of global sensitivity analysis, the catalyst concentration is found to be most significant for both the glycerol and ethyl ester yield.


Sign in / Sign up

Export Citation Format

Share Document