Effect of H2S pre-annealing treatment on interfacial and electrical properties of HfO2/Si1−xGex (x = 0-0.3)

Author(s):  
Woohui Lee ◽  
Changmin Lee ◽  
Jinyong Kim ◽  
Jehoon Lee ◽  
Deokjoon Eom ◽  
...  

To understand the effect of H2S pre-annealing treatment on a Si1-xGex alloy film, the interfacial and electrical characteristics of atomic-layer-deposited HfO2/Si1-xGex were studied while varying the Ge concentration (x value)...

2011 ◽  
Vol 1283 ◽  
Author(s):  
Nicolo’ Chiodarelli ◽  
Annelies Delabie ◽  
Sugiura Masahito ◽  
Yusaku Kashiwagi ◽  
Olivier Richard ◽  
...  

ABSTRACTBecause of their superior electronic properties and bottom-up growth mode, Carbon Nanotubes (CNT) may offer a valid alternative for high aspect ratio vertical interconnects in future generations of microchips. For being successful, though, CNT based interconnects must reach sufficiently low values of resistance to become competitive with current W or Cu based technologies. This essentially means that CMOS compatible processes are needed to produce dense CNT shells of extremely high quality with almost ideal contacts. Moreover, their electrical properties must be preserved at every process step in the integration of CNT into vertical interconnect structures. In this work this latter aspect is analyzed by studying the changes in the electrical characteristics when encapsulating CNT into different oxides. Oxide encapsulation is often exploited to hold the CNT in place and to avoid snapping during a polishing step. On the other hand, oxide encapsulation can influence the properties of the grown CNT which are directly exposed to possibly harmful oxidative conditions. Two different deposition techniques and oxides were evaluated: Chemical Vapor Deposition (CVD) of SiO2 (reference) and Atomic Layer Deposition (ALD) of Al2O3 in less aggressive oxidizing conditions. The two processes were transferred to CNT interconnect test structures on 200mm wafers and electrically benchmarked. The CNT resistance was measured in function of the CNT length which allows the extraction and individual distinction of the resistive contributions of the CNT and the contacts. It is shown that the encapsulating SiO2 deposited by CVD degrades the resistance of CNT by altering their quality. Directions for future improvements have been identified and discussed.


2005 ◽  
Vol 483-485 ◽  
pp. 705-708 ◽  
Author(s):  
Marc Avice ◽  
Ulrike Grossner ◽  
Edouard V. Monakhov ◽  
Joachim Grillenberger ◽  
Ola Nilsen ◽  
...  

In this study, electrical properties of Al2O3 deposited by Atomic Layer Deposition (ALCVD) on n-type 4H-SiC were investigated. Metal-Oxide-Semiconductor (MOS) capacitors were characterized by various electrical techniques such as Capacitance-Voltage (CV), Current- Voltage (IV) and Deep Level Transient Spectroscopy (DLTS) measurements. Two different oxidants, H2O and O3, have been used for the oxide deposition. After deposition, the flat-band voltage shift is much less using O3 than H2O (~ 7V versus ~ 20V). Annealing treatment has been carried out at different temperatures in Ar atmosphere up to 700°C. Whereas the flat-band voltage shift can be reduced by annealing, the leakage current remains rather high.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
A.M. Letsoalo ◽  
M.E. Lee ◽  
E.O. de Neijs

Semiconductor devices require metal contacts for efficient collection of electrical charge. The physics of these metal/semiconductor contacts assumes perfect, abrupt and continuous interfaces between the layers. However, in practice these layers are neither continuous nor abrupt due to poor nucleation conditions and the formation of interfacial layers. The effects of layer thickness, deposition rate and substrate stoichiometry have been previously reported. In this work we will compare the effects of a single deposition technique and multiple depositions on the morphology of indium layers grown on (100) CdTe substrates. The electrical characteristics and specific resistivities of the indium contacts were measured, and their relationships with indium layer morphologies were established.Semi-insulating (100) CdTe samples were cut from Bridgman grown single crystal ingots. The surface of the as-cut slices were mechanically polished using 5μm, 3μm, 1μm and 0,25μm diamond abrasive respectively. This was followed by two minutes immersion in a 5% bromine-methanol solution.


2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 692
Author(s):  
Jong Hyeon Won ◽  
Seong Ho Han ◽  
Bo Keun Park ◽  
Taek-Mo Chung ◽  
Jeong Hwan Han

Herein, we performed a comparative study of plasma-enhanced atomic layer deposition (PEALD) of SnO2 films using Sn(dmamp)2 as the Sn source and either H2O plasma or O2 plasma as the oxygen source in a wide temperature range of 100–300 °C. Since the type of oxygen source employed in PEALD determines the growth behavior and resultant film properties, we investigated the growth feature of both SnO2 PEALD processes and the various chemical, structural, morphological, optical, and electrical properties of SnO2 films, depending on the oxygen source. SnO2 films from Sn(dmamp)2/H2O plasma (SH-SnO2) and Sn(dmamp)2/O2 plasma (SO-SnO2) showed self-limiting atomic layer deposition (ALD) growth behavior with growth rates of ~0.21 and 0.07–0.13 nm/cycle, respectively. SO-SnO2 films showed relatively larger grain structures than SH-SnO2 films at all temperatures. Interestingly, SH-SnO2 films grown at high temperatures of 250 and 300 °C presented porous rod-shaped surface morphology. SO-SnO2 films showed good electrical properties, such as high mobility up to 27 cm2 V−1·s−1 and high carrier concentration of ~1019 cm−3, whereas SH-SnO2 films exhibited poor Hall mobility of 0.3–1.4 cm2 V−1·s−1 and moderate carrier concentration of 1 × 1017–30 × 1017 cm−3. This may be attributed to the significant grain boundary and hydrogen impurity scattering.


2021 ◽  
Vol 129 (5) ◽  
pp. 055303
Author(s):  
Jayeeta Biswas ◽  
Geetika Bajaj ◽  
Astha Tyagi ◽  
Prerna Goradia ◽  
Saurabh Lodha

Sign in / Sign up

Export Citation Format

Share Document