Aerogels as promising materials for antibacterial applications: a mini-review

2021 ◽  
Author(s):  
Gulcihan Guzel Kaya ◽  
Elena Aznar ◽  
Huseyin Deveci ◽  
Ramón Martínez-Máñez

Aerogels with ultra-low density, high porosity, tunable sizes, and biocompatibility have been regarded as promising carriers for antibacterial applications. Different approaches can be followed to obtain such beneficial antibacterial activity.

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1899 ◽  
Author(s):  
Haiwei Yang ◽  
Zongqian Wang ◽  
Zhi Liu ◽  
Huan Cheng ◽  
Changlong Li

Aerogel fiber, with the characteristics of ultra-low density, ultra-high porosity, and high specific surface area, is the most potential candidate for manufacturing wearable thermal insulation material. However, aerogel fibers generally show weak mechanical properties and complex preparation processes. Herein, through firstly preparing a cellulose acetate/polyacrylic acid (CA/PAA) hollow fiber using coaxial wet-spinning followed by injecting the silk fibroin (SF) solution into the hollow fiber, the CA/PAA-wrapped SF aerogel fibers toward textile thermal insulation were successfully constructed after freeze-drying. The sheath (CA/PAA hollow fiber) possesses a multiscale porous structure, including micropores (11.37 ± 4.01 μm), sub-micron pores (217.47 ± 46.16 nm), as well as nanopores on the inner (44.00 ± 21.65 nm) and outer (36.43 ± 17.55 nm) surfaces, which is crucial to the formation of a SF aerogel core. Furthermore, the porous CA/PAA-wrapped SF aerogel fibers have many advantages, such as low density (0.21 g/cm3), high porosity (86%), high strength at break (2.6 ± 0.4 MPa), as well as potential continuous and large-scale production. The delicate structure of multiscale porous sheath and ultra-low-density SF aerogel core synergistically inhibit air circulation and limit convective heat transfer. Meanwhile, the high porosity of aerogel fibers weakens heat transfer and the SF aerogel cellular walls prevent infrared radiation. The results show that the mat composed of these aerogel fibers exhibits excellent thermal insulating properties with a wide working temperature from −20 to 100 °C. Therefore, this SF-based aerogel fiber can be considered as a practical option for high performance thermal insulation.


1993 ◽  
Vol 8 (2) ◽  
pp. 352-355 ◽  
Author(s):  
S.P. Hotaling

Despite the extremely low density and the hence low weight of aerogel materials, the applicability of these materials to reflective applications has had little attention due to the high porosities exhibited by the materials. This high porosity yields an intrinsically rough but uniform surface topology for aerogel of density in the low hundreds of milligrams per cubic centimeter and a fractal surface geometry for lower density aerogel (densities of the order of tens of milligrams per cubic centimeter). This paper presents new results of aerogel materials used as ultra-light substrates for reflective coatings by way of surface machining, polishing, and planarization prior to metallization, and the optical characterization thereof.


2019 ◽  
Vol 6 (8) ◽  
pp. 190596 ◽  
Author(s):  
Ying Shen ◽  
Dawei Li ◽  
Bingyao Deng ◽  
Qingsheng Liu ◽  
Huizhong Liu ◽  
...  

Due to the high porosity, resilience and ultra-low density, polymer nanofibre-derived aerogels (NFAs) have been widely investigated in recent years. However, welding of the fibrous networks of NFAs, which has been proved extremely essential to their structural performance, still remains a major challenge. Herein, electrospun polyimide (PI) nano/microfibres were used as building blocks to construct hierarchically porous aerogels through a solid-templating technique. By further welding the adjacent nano/microfibres at their cross-points in a controllable fashion by solvent-vapour, super elasticity was achieved for the aerogels, with a recoverable ultimate strain of 80%. It is noteworthy that this process is free from cross-linking, heating and significant structure changing (i.e. chemical structure, crystallinity and fibrous network). Additionally, the porous structure of PI nano/microfibre aerogels (PI-N/MFAs) could be tuned by adjusting the organization of microfibres from a disordered/ordered cellular to a uniform structure. The as-obtained aerogels showed ultra-low density (4.81 mg cm −3 ), high porosity (99.66%), and comparable or higher recoverable compressive strain and stress relative to the other nanofibre-based aerogels. Furthermore, we showed the potential of such an aerogel for particle or aerosol filtration. PI nanofibre aerogels composite filters (PI-NFACFs) manifested excellent performance in PM 2.0 filtration (99.6% filtration efficiency with 115 Pa pressure drop). Therefore, this study brought a new perspective on the simple preparation of nanofibre-based aerogels for air filtration.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 957
Author(s):  
Nicholas Curry ◽  
Matthias Leitner ◽  
Karl Körner

High-porosity thermal barrier coatings are utilized on gas turbine components where maximizing the coating thermal insulation capability is the primary design criteria. Though such coatings have been in industrial use for some time, manufacturing high-porosity coatings quickly and efficiently has proven challenging. With the industry demand to increase productivity and reduce waste generation, there is a drive to look at improved coating manufacturing methods. This article looks at high-porosity coatings manufactured using a high-power plasma system in comparison with a current industrial coating. A commercial spray powder is compared with an experimental Low-Density powder developed to maximize coating porosity without sacrificing coating deposition efficiency. The resultant coatings have been assessed for their microstructure, adhesion strength, furnace cyclic lifetime, thermal conductivity and sintering behavior. Finally, the impact of spray processing on coating economics is discussed. The use of a Low-Density powder with a high-power plasma system allows a high-porosity coating to be manufactured more efficiently and more cost effectively than with conventional powder feedstock. The improvement in thermal properties for the experimental coating demonstrates there is scope to improve industrial coatings by designing with specific thermal resistance rather than thickness and porosity as coating requirements.


2016 ◽  
Vol 678 ◽  
pp. 88-98 ◽  
Author(s):  
Harpal Singh

Rigid polyurethane foam (RPUF) is typically prepared by the reaction of an isocyanate, such as methyl diphenyl diisocyanate (MDI) with a polyol blend. During the polymerization reaction, a blowing agent expands the reacting mixture. The finished product is a solid, cellular polymer with a high thermal resistance. RPUF is an outstanding material for different applications. It has many desirable properties such as low thermal conductivity, low density, low water absorption, low moisture permeability, excellent dimensional stability, high strength to weight ratio. So, it is the best insulating material for industrial buildings, cold storages, telecom and defense shelters due to low thermal conductivity, low density, low moisture permeability and high porosity. It works to reduce heating and cooling loss, improving the efficiency of the building envelope. Thus, RPUF insulation in building envelopes brings additional benefits in energy savings, resulting in lower energy bills and protecting the environment by cutting CO2 emissions.


2000 ◽  
Vol 657 ◽  
Author(s):  
Jong-Ah Paik ◽  
Nobuaki Kitazawa ◽  
Shih-Kang Fan ◽  
Chang-Jin Kim ◽  
Ming C. Wu ◽  
...  

ABSTRACTThe high porosity and uniform pore size provided by mesoporous oxide films offer interesting opportunities for MEMS devices that require low density and low thermal conductivity. This paper describes recent efforts at adapting mesoporous films for MEMS fabrication. Mesoporous SiO2 and Al2O3 films were prepared using block copolymers as the structure-directing agents, leading to films which were 70% porous and < 5 nm surface roughness. A number of etchants were investigated and good etch selectivity was observed with both dry and wet systems. Micromachining methods were used to fabricate cantilevers, micro bridges and membranes.


2021 ◽  
Vol 22 (5) ◽  
Author(s):  
Ádám Haimhoffer ◽  
Gábor Vasvári ◽  
György Trencsényi ◽  
Monika Béresová ◽  
István Budai ◽  
...  

AbstractSeveral drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box–Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm3, and the microCT record showed high porosity with 40 μm average size of bubbles in the molten suspension. The BaSO4-loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.


2022 ◽  
Vol 964 (1) ◽  
pp. 012033
Author(s):  
Hieu M Nguyen ◽  
Khoi A Tran ◽  
Tram T N Nguyen ◽  
Nga N H Do ◽  
Kien A Le ◽  
...  

Abstract Coir, known as coconut fibers, are an abundant cellulosic source in Vietnam, which are mostly discarded when copra and coconut water are taken, causing environmental pollution and waste of potential biomass. In this research, carbon aerogels from chemically pretreated coir were successfully synthesized via simple sol-gel process with NaOH-urea solution, economical freeze-drying, and carbonization. The samples, including pretreated coir, coir aerogels, and carbon aerogels, are characterized using FTIR spectroscopy, SEM, XRD spectroscopy, and TGA. The carbon aerogels exhibit low density (0.034–0.047 g/cm3), high porosity (97.63–98.32 %), and comparable motor oil sorption capacity (22.71 g/g). The properties of carbon aerogels are compared with those of coir aerogels, indicating such better values than those of coir aerogels. Coir-derived carbon aerogels is a potential replacement for the hydrophobically-coated cellulose aerogels in term of treating oil spills.


1991 ◽  
Vol 132 ◽  
pp. 143-152 ◽  
Author(s):  
Jon L. Maienschein ◽  
Patrick E. Barry ◽  
Frederick McMurphy ◽  
John Bowers

Sign in / Sign up

Export Citation Format

Share Document