Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy

2021 ◽  
Author(s):  
Xuelu He ◽  
Zhenqi Jiang ◽  
Ozioma Udochukwu Akakuru ◽  
Juan Li ◽  
Aiguo Wu

The controlled synthesis methods and the applications of nanoscale covalent organic frameworks in cancer therapy are summarized in this feature article.

Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


2017 ◽  
Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1926
Author(s):  
Gaojie Li ◽  
Wenshuang Zhang ◽  
Na Luo ◽  
Zhenggang Xue ◽  
Qingmin Hu ◽  
...  

In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.


2021 ◽  
Vol 17 ◽  
Author(s):  
Linyu Wang ◽  
Shasha Hong ◽  
Yuxi Yang ◽  
Yonghai Song ◽  
Li Wang

Background: In recent years, electrochemical sensors are widely preferred because of their high sensitivity, rapid response, low cost and easy miniaturization. Covalent organic frameworks (COFs), a porous crystalline polymer formed by organic units connected by covalent bonds, have been widely used in gas adsorption and separation, drug transportation, energy storage, photoelectric catalysis, electrochemistry and other aspects due to their large specific surface, excellent stability, high inherent porosity, good crystallinity as well as structural and functional controllability. The topological structure of COFs can be designed in advance, the structural units and linkage are diversified, and the structure is easy to be functionalized, which are all beneficial to their application in electrochemical sensors. Methods: The types, synthesis methods, properties of covalent organic frameworks and some examples of using covalent organic frameworks in electrochemical sensors are reviewed. Results: Due to their characteristics of a large specific surface, high porosity, orderly channel and periodically arranged π electron cloud, COFs are often used to immobilize metal nanoparticles, aptamers or other materials to achieve the purpose of building electrochemical sensors with high sensitivity and good stability. Since the structure of COFs can be predicted, different organic units can build COFs with different structures and properties. Therefore, organic units with certain functional groups can be selected to build COFs with certain properties and used directly for electrochemical sensors. Conclusion: COFs have a good application prospect in electrochemical sensors.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4644
Author(s):  
Nene Ajinkya ◽  
Xuefeng Yu ◽  
Poonam Kaithal ◽  
Hongrong Luo ◽  
Prakash Somani ◽  
...  

Iron oxides are chemical compounds which have different polymorphic forms, including γ-Fe2O3 (maghemite), Fe3O4 (magnetite), and FeO (wustite). Among them, the most studied are γ-Fe2O3 and Fe3O4, as they possess extraordinary properties at the nanoscale (such as super paramagnetism, high specific surface area, biocompatible etc.), because at this size scale, the quantum effects affect matter behavior and optical, electrical and magnetic properties. Therefore, in the nanoscale, these materials become ideal for surface functionalization and modification in various applications such as separation techniques, magnetic sorting (cells and other biomolecules etc.), drug delivery, cancer hyperthermia, sensing etc., and also for increased surface area-to-volume ratio, which allows for excellent dispersibility in the solution form. The current methods used are partially and passively mixed reactants, and, thus, every reaction has a different proportion of all factors which causes further difficulties in reproducibility. Direct active and complete mixing and automated approaches could be solutions to this size- and shape-controlled synthesis, playing a key role in its exploitation for scientific or technological purposes. An ideal synthesis method should be able to allow reliable adjustment of parameters and control over the following: fluctuation in temperature; pH, stirring rate; particle distribution; size control; concentration; and control over nanoparticle shape and composition i.e., crystallinity, purity, and rapid screening. Iron oxide nanoparticle (IONP)-based available clinical applications are RNA/DNA extraction and detection of infectious bacteria and viruses. Such technologies are important at POC (point of care) diagnosis. IONPs can play a key role in these perspectives. Although there are various methods for synthesis of IONPs, one of the most crucial goals is to control size and properties with high reproducibility to accomplish successful applications. Using multiple characterization techniques to identify and confirm the oxide phase of iron can provide better characterization capability. It is very important to understand the in-depth IONP formation mechanism, enabling better control over parameters and overall reaction and, by extension, properties of IONPs. This work provides an in-depth overview of different properties, synthesis methods, and mechanisms of iron oxide nanoparticles (IONPs) formation, and the diverse range of their applications. Different characterization factors and strategies to confirm phase purity in the IONP synthesis field are reviewed. First, properties of IONPs and various synthesis routes with their merits and demerits are described. We also describe different synthesis strategies and formation mechanisms for IONPs such as for: wustite (FeO), hematite (α-Fe2O3), maghemite (ɤ-Fe2O3) and magnetite (Fe3O4). We also describe characterization of these nanoparticles and various applications in detail. In conclusion, we present a detailed overview on the properties, size-controlled synthesis, formation mechanisms and applications of IONPs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yang Li ◽  
Guanjie Jiang ◽  
Nanqi Ouyang ◽  
Zhangjie Qin ◽  
Shuai Lan ◽  
...  

Birnessite nanoflowers composed of layers have been proven to be the strongest adsorbent and oxidant in the surface environment. However, the current synthesis methods of birnessite nanoflowers are suffering from long reaction time and high reaction temperature. Based on these, this paper explores a new method for the rapid and controlled synthesis of layered manganese oxides. The method relies on the molar ratios of KMnO4 and H2O2 redox reacting species to drive the production of birnessite nanoflowers under acidic conditions. The molar ratios of KMnO4 and H2O2 are the key to the crystal structure of the as-prepared. It was found that when the molar ratios of KMnO4 and H2O2 is from 1:1.25 to 1:1.90, the sample is birnessite nanoflowers, and when the ratio is increased to 1:2.0, the sample is a mixture of birnessite nanoflowers and feitknechtite nanoplates. Among the as-prepared samples, BF-1.85 (molar ratios of KMnO4 and H2O2 is 1:1.85) shows the highest capacity for Pb2+ adsorption (2,955 mmol/kg) and greatest degradation efficiency of phenol and TOC. The method proposed herein is economical and controllable, and it yields products with high efficiency for the elimination of inorganic and organic pollutants.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5948
Author(s):  
Veronica Manescu (Paltanea) ◽  
Gheorghe Paltanea ◽  
Iulian Antoniac ◽  
Marius Vasilescu

Recently, magnetic nanoparticles (MNPs) have more and more often been used in experimental studies on cancer treatments, which have become one of the biggest challenges in medical research. The main goal of this research is to treat and to cure advanced or metastatic cancer with minimal side effects through nanotechnology. Drug delivery approaches take into account the fact that MNPs can be bonded to chemotherapeutical drugs, nucleic acids, synthetized antibodies or radionuclide substances. MNPs can be guided, and different treatment therapies can be applied, under the influence of an external magnetic field. This paper reviews the main MNPs’ synthesis methods, functionalization with different materials and highlight the applications in cancer therapy. In this review, we describe cancer cell monitorization based on different types of magnetic nanoparticles, chemotherapy, immunotherapy, magnetic hyperthermia, gene therapy and ferroptosis. Examples of applied treatments on murine models or humans are analyzed, and glioblastoma cancer therapy is detailed in the review. MNPs have an important contribution to diagnostics, investigation, and therapy in the so called theranostics domain. The main conclusion of this paper is that MNPs are very useful in different cancer therapies, with limited side effects, and they can increase the life expectancy of patients with cancer drug resistance.


2021 ◽  
Vol 13 (2) ◽  
pp. 544-551
Author(s):  
Devendra Kumar Verma ◽  
Rajdeep Malik ◽  
Jagram Meena ◽  
Rashmi Rameshwari

Chitosan as a natural biopolymer has been produced to be the important host for the preparation of metallic nanoparticles (MNPs) because of its excellent characteristics like:- good stabilizing and capping ability, biocompatibility, biodegradability, eco-friendly and non-toxicity properties. Chitosan can play a very important role for synthesis of metallic nanoparticles, as chitosan is a cationic polymer. It attracts metal ions and reduces them and also Capps and stabilizes. So basically chitosan can be responsible for the controlled synthesis of metallic nanoparticle. Chitosan has a very good chelating property. This property is due to its –NH2 and –OH functional groups. Size and shape of metallic nanoparticles are much affected by chitosan concentration, molecular weight, time of reaction, degree of acetylation of chitosan, pH of the medium, method of synthesis and type of derivative of chitosan etc. Metallic nanoparticles`s properties and applications are much associated with their size and shape. Optimization of the metallic nanoparticle size and shape has been the subject of curiosity for nanotechnology scientist. Chitosan can solve this problem by applying the optimization conditions. But a very little work is reported about: - how chitosan can affect the size and shape of metallic nanoparticles and how can it reduce metal salts to prepare metallic nanoparticle, stablilized in chitosan metrics. This is very first report as a review article highlighting the effect of chitosan on synthesis of metallic nanoparticles and optimization conditions. This review will also be beneficial for scientist working on food sensing application of nanoparticles.  Various synthesis methods and applications of chitosan based metallic nanoparticles have also been reported in details.


2020 ◽  
Vol 56 (60) ◽  
pp. 8332-8341
Author(s):  
Eunbin Hwang ◽  
Hyo Sung Jung

This feature article summarizes the recent progress in the study of chemodynamic therapy agents based on metal–organic complexes.


Sign in / Sign up

Export Citation Format

Share Document