Corner-opening and corner-capping of mono-substituted T8 POSS: product distribution and isomerization

2022 ◽  
Author(s):  
Liang Jin ◽  
Chengyang Hong ◽  
Xiangqian Li ◽  
Zhiyan Sun ◽  
Fengfeng Feng ◽  
...  

We applied chromatographic and spectroscopic techniques to revisit the product distribution of the corner-opening and corner-capping reactions of monosubstituted T8 POSS. The monosubstituted Si is more likely to be removed...

1993 ◽  
Vol 71 (9) ◽  
pp. 1349-1352 ◽  
Author(s):  
Michel Girard ◽  
François Clairmont ◽  
Aspi Maneckjee ◽  
Nicole Mousseau ◽  
Brian A. Dawson ◽  
...  

Ronidazole and dimetridazole, two important veterinary drugs, were found to react readily in the presence of cysteine, under neutral aqueous conditions, leading to the formation of 5-S-cysteinyl-1-methylimidazole-2-methanol carbamate and 5-S-cysteinyl-1,2-dimethylimidazole respectively through nitro displacement. The reaction products were identified by spectroscopic techniques. The rate of reaction was accelerated by increasing the pH of the medium and was accompanied by a slight change in the product distribution. The reaction was also observed, albeit at a slower rate than that of cysteine, with glutathione, another ubiquitous thiol substrate found in biological systems. While this type of nucleophilic reaction has previously been observed for suitably substituted nitrobenzene derivatives, to the best of our knowledge its occurrence with nitro-heteroaromatics has never been reported. The ready reaction of the parent nitro drugs under such mild aqueous conditions suggests that this may be an alternative path for the formation of nonextractable bound residues in tissues.


1994 ◽  
Vol 359 ◽  
Author(s):  
H. C. Dorn ◽  
S. Stevenson ◽  
P. Burbank ◽  
Z. Sun ◽  
T. Glass ◽  
...  

Since the initial discovery of fullerenes nearly a decade ago [1], material scientists have focused attention on the possibility of encapsulating one or more metal atoms inside these spheroidal carbon frames. The experimental realization of macroscopic quantities of endohedral metallofullerenes (Am@C2n, n=30-55) in the early 1990's has heightened interest in developing this new class of tunable materials with possible electronic and/or optical applications [2,3]. They have been characterized by a number of spectroscopic techniques, for example, scanning tunneling microscope [4,5], EXAFS [6,7] and x-ray diffraction and electron microscopy [8]. However, low production yields and purification difficulties have hampered the development of this new class of materials. The soluble product distribution usually consists of high levels of the empty-caged fullerenes C60, C70, C84 and decreasing levels of the higher fullerenes, while the endohedral metallofullerene fraction usually constitutes less than 1% of the total soluble yield. Furthermore, the endohedral metallofullerene fraction consists of molecules with different numbers of metal atoms encapsulated (m=1-3), cage sizes (C2n) and isomers of the same mass (e.g., Er2@C82). The purification process is further complicated by the chemical reactivity of several endohedral metallofullerenes [9] in aerobic environments. For several years, we have been involved in a collaborative effort to develop methodology for detection, isolation, and characterization of endohedral metallofullerenes. The focus of the present study is on fullerenes encapsulating metals from Group II1b, (Sc@C2n, Y@C2n, and La@C2n) and the lanthanide series metal (Er@C2n).


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Author(s):  
Bradley L. Thiel ◽  
Chan Han R. P. ◽  
Kurosky L. C. Hutter ◽  
I. A. Aksay ◽  
Mehmet Sarikaya

The identification of extraneous phases is important in understanding of high Tc superconducting oxides. The spectroscopic techniques commonly used in determining the origin of superconductivity (such as RAMAN, XPS, AES, and EXAFS) are surface-sensitive. Hence a grain boundary phase several nanometers thick could produce irrelevant spectroscopic results and cause erroneous conclusions. The intergranular phases present a major technological consideration for practical applications. In this communication we report the identification of a Cu2O grain boundary phase which forms during the sintering of YBa2Cu3O7-x (1:2:3 compound).Samples are prepared using a mixture of Y2O3. CuO, and BaO2 powders dispersed in ethanol for complete mixing. The pellets pressed at 20,000 psi are heated to 950°C at a rate of 5°C per min, held for 1 hr, and cooled at 1°C per min to room temperature. The samples show a Tc of 91K with a transition width of 2K. In order to prevent damage, a low temperature stage is used in milling to prepare thin foils which are then observed, using a liquid nitrogen holder, in a Philips 430T at 300 kV.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 15-21 ◽  
Author(s):  
JI-YOUNG LEE ◽  
CHUL-HWAN KIM ◽  
JEONG-MIN SEO ◽  
HO-KYUNG CHUNG ◽  
KYUNG-KIL BACK ◽  
...  

Eco-friendly cushioning materials were made with thermomechanical pulps (TMPs) from waste woods collected from local mountains in Korea, using a suction-forming method without physical pressing. The TMP cushions had superior shock-absorbing performance, with lower elastic moduli than expanded polystyrene (EPS) or molded pulp. Even though the TMP cushions made using various suction times had many voids in their inner fiber structure, their apparent densities were a little higher than that of EPS and much lower than that of molded pulp. The addition of cationic starch contributed to an increase in the elastic modulus of the TMP cushions without increasing the apparent density, an effect which was different from that of surface sizing with starch. In the impact test, the TMP cushions showed a more ductile pattern than the brittle EPS. The porosity of the TMP cushion was a little less than that of EPS and much greater than that of molded pulp. The porous structure of the TMP cushions contributed to their excellent thermal insulating capacity, which was equivalent to that of EPS. In summary, the TMP packing cushions showed great potential for surviving external impacts during product distribution.


2011 ◽  
Vol 7 (2) ◽  
pp. 1338-1347
Author(s):  
Tarek Ali Fahad ◽  
Shaker.A.N. AL-Jadaan

Two new heterocyclic Organmercury compounds   were prepared from the reaction of Sulfamethaxazole and Sulfadiazine with 4-acetaminophenol as a coupler and separated as solids with characteristic colors. these compounds were characterized by F.T.IR-spectroscopy 1H-NMR , Micro-elemental Analysis and UV-Vis spectroscopic techniques . The work involves a study of acid – base properties compounds at different pH values, the ionization and protonation constants were calculated. The thermal behavior of these two compounds   were investigated on the basis of thermogravimetric (TGA) and differential thermogravimetric (DTG) analyses, Thermal decomposition of these compounds is multi-stage processes.


2017 ◽  
Author(s):  
Arpita Yadav ◽  
Dasari L V K Prasad ◽  
Veejendra Yadav

<p>The torquoselectivity, the inward or outward ring opening of 3-substituted cyclobutenes, is conventionally guided by the donor and/or acceptor ability of the substituent (S). It is typically predicted by estimating the respective ring opening transition state (TS) barriers. While there is no known dissent in regard to the outward rotation of electron-rich substituents from the approaches of TS calculations, the inward rotation was predicted for some electron-accepting substituents and outward for others. To address this divergence in predicting the torquoselectivity, we have used reliable orbital descriptors through natural bond orbital theoretical calculations and demonstrated that (a) interactions <i>n</i><i><sub>S</sub></i>→s*<sub>C3C4</sub> for a lone pair containing substituent, s<sub>S</sub>→s*<sub>C3C4</sub> for a s-donor substituent, s<sub>C3C4</sub>→p*<sub>S</sub> for a resonance-accepting substituent and s<sub>C3C4</sub>→s*<sub>S</sub> for a s-acceptor substituent constitute the true electronic controls of torquoselectivity, and (b) reversibility of the ring opening event is an additional important contributor to the observed product distribution.</p>


2018 ◽  
Author(s):  
Ravi Shankar ◽  
Sofia Marchesini ◽  
Camille Petit

Porous boron nitride is gaining significant attention for applications in molecular separations, photocatalysis, and drug delivery. All these areas call for a high degree of stability (or a controlled stability) over a range of chemical environments, and particularly under humid conditions. The hydrolytic stability of the various forms of boron nitride, including porous boron nitride, has been sparingly addressed in the literature. Here, we map the physical-chemical properties of the material to its hydrolytic stability for a range of conditions. Using analytical, imaging and spectroscopic techniques, we identify the links between the hydrolytic instability of porous boron nitride and its limited crystallinity, high porosity as well as the presence of oxygen atoms. To address this instability issue, we demonstrate that subjecting the material to a thermal treatment leads to the formation of crystalline domains of h-BN exhibiting a hydrophobic character. The heat-treated sample exhibits enhanced hydrolytic stability, while maintaining a high porosity. This work provides an effective and simple approach to producing stable porous boron nitride structures, and will progress the implementation of the material in applications involving interfacial phenomena.<br>


Sign in / Sign up

Export Citation Format

Share Document