Thermoelectric Properties of Zinc-Doped Cu5Sn2Se7 and Cu5Sn2Te7

2021 ◽  
Author(s):  
Cheryl Sturm ◽  
Leilane R. Macario ◽  
Takao Mori ◽  
Holger Kleinke

High-performance thermoelectric materials are currently being sought after to recycle waste heat. Copper chalcogenides in general are materials of great interest because of their naturally low thermal conductivity and readily...

2007 ◽  
Vol 1044 ◽  
Author(s):  
Shinsuke Yamanaka ◽  
Ken Kurosaki ◽  
Anek Charoenphakdee ◽  
Hideaki Mastumoto ◽  
Hiroaki Muta

AbstractWith the goal of developing high-performance bulk thermoelectric materials, we have characterized ternary silver thallium tellurides. The ternary silver thallium tellurides exhibit extremely low thermal conductivity (<0.5 Wm−1K−1) and consequently their thermoelectric performance is excellent. Although the extremely low thermal conductivity materials, as typified by the ternary silver thallium tellurides, would be a new class of next-generation thermoelectric materials, thallium compounds are unsuitable for practical application because of their toxicity. Against such a background, we are currently exploring thallium-free thermoelectric materials with extremely low thermal conductivity. In this paper, we will briefly summarize the thermoelectric properties of ternary thallium tellurides obtained in our group. Further experiments aimed at improving the ZT of these materials will be presented. Finally, we will propose two candidates: Ag8GeTe6 and Ga2Te3 as thallium-free low thermal conductivity materials.


Author(s):  
Qianglin Wei ◽  
Xueliang Zhu ◽  
Peng-Fei Liu ◽  
Yiyuan Wu ◽  
Jiangjiang Ma ◽  
...  

Through first-principles calculations, we report the thermoelectric properties of two-dimensional (2D) hexagonal group-IV tellurides XTe (X= Ge, Sn and Pb), with quadruple layers (QL) in Te-X-X-Te stackting sequence, as promising...


2015 ◽  
Vol 44 (5) ◽  
pp. 2285-2293 ◽  
Author(s):  
Jing Li ◽  
Li-Dong Zhao ◽  
Jiehe Sui ◽  
David Berardan ◽  
Wei Cai ◽  
...  

The thermoelectric properties of Na doped BaCu2Se2 were studied. The electrical conductivity of BaCu2Se2 was increased by 2 orders of magnitude through Na doping at the Ba sites, combined with a surprisingly low thermal conductivity; a ZT of 1.0 has been obtained for Ba0.925Na0.075Cu2Se2 at 773 K.


2005 ◽  
Vol 886 ◽  
Author(s):  
Shinsuke Yamanaka ◽  
Ken Kurosaki ◽  
Atsuko Kosuga ◽  
Keita Goto ◽  
Hiroaki Muta

ABSTRACTWe have prepared polycrystalline bulk samples of various thallium compounds and measured their thermoelectric properties. The most remarkable point of the thermoelectric properties of the thallium compounds is the extremely low thermal conductivity. The state-of-the-art thermoelectric materials such as Bi2Te3 and TAGS materials indicate relatively low the thermal conductivity, around 1.5 W/m/K. However, the thermal conductivity of the thallium compounds is below 0.5 W/m/K; especially that of silver thallium tellurides is around 0.25 W/m/K at room temperature. This extremely low thermal conductivity leads a great advantage for an enhancement of the thermoelectric performance. In this paper, we report on the properties of some thallium compounds selected for study as novel thermoelectric materials. One of these compounds seems to have a thermoelectric figure of merit comparable to those of state-of-the-art materials.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (3) ◽  
pp. 199-205 ◽  
Author(s):  
George S. Nolas ◽  
Joe Poon ◽  
Mercouri Kanatzidis

AbstractGood thermoelectric materials possess low thermal conductivity while maximizing electric carrier transport. This article looks at various classes of materials to understand their behavior and determine methods to modify or “tune” them to optimize their thermoelectric properties. Whether it is the use of “rattlers” in cage structures such as skutterudites, or mixed-lattice atoms such as the complex half-Heusler alloys, the ability to manipulate the thermal conductivity of a material is essential in optimizing its properties for thermoelectric applications.


2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


Author(s):  
Gautam Sharma ◽  
Vineet Kumar Pandey ◽  
Shouvik Datta ◽  
Prasenjit Ghosh

Thermoelectric materials are used for conversion of waste heat to electrical energy. The transport coefficients that determine their thermoelectric properties depend on the band structure and the relaxation time of...


Polymer ◽  
2020 ◽  
Vol 206 ◽  
pp. 122912
Author(s):  
Naoya Yanagishima ◽  
Shinji Kanehashi ◽  
Hiromu Saito ◽  
Kenji Ogino ◽  
Takeshi Shimomura

MRS Advances ◽  
2020 ◽  
Vol 5 (10) ◽  
pp. 481-487 ◽  
Author(s):  
Norifusa Satoh ◽  
Masaji Otsuka ◽  
Yasuaki Sakurai ◽  
Takeshi Asami ◽  
Yoshitsugu Goto ◽  
...  

ABSTRACTWe examined a working hypothesis of sticky thermoelectric (TE) materials, which is inversely designed to mass-produce flexible TE sheets with lamination or roll-to-roll processes without electric conductive adhesives. Herein, we prepared p-type and n-type sticky TE materials via mixing antimony and bismuth powders with low-volatilizable organic solvents to achieve a low thermal conductivity. Since the sticky TE materials are additionally injected into punched polymer sheets to contact with the upper and bottom electrodes in the fabrication process, the sticky TE modules of ca. 2.4 mm in thickness maintained temperature differences of ca. 10°C and 40°C on a hot plate of 40 °C and 120°C under a natural-air cooling condition with a fin. In the single-cell resistance analysis, we found that 75∼150-µm bismuth powder shows lower resistance than the smaller-sized one due to the fewer number of particle-particle interfaces in the electric pass between the upper and bottom electrodes. After adjusting the printed wiring pattern for the upper and bottom electrodes, we achieved 42 mV on a hot plate (120°C) with the 6 x 6 module having 212 Ω in the total resistance. In addition to the possibility of mass production at a reasonable cost, the sticky TE materials provide a low thermal conductivity for flexible TE modules to capture low-temperature waste heat under natural-air cooling conditions with fins for the purpose of energy harvesting.


Author(s):  
Chongjian Zhou ◽  
Yong Kyu Lee ◽  
Yuan Yu ◽  
Sejin Byun ◽  
Zhong-Zhen Luo ◽  
...  

AbstractThermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m–1 K–1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.


Sign in / Sign up

Export Citation Format

Share Document