Silver doped SnO2 Nanostructures for Photocatalytic Water Splitting and Catalytic Nitrophenol Reduction

2022 ◽  
Author(s):  
Sapan K. Jain ◽  
Mohd Fazil ◽  
Farha Naaz ◽  
Nayeeem A. Pandit ◽  
Jahangeer Ahmed ◽  
...  

Driven by the quest of renewable and clean energy sources, researchers all around the globe are seeking solutions to replace the non-renewable fossil fuels to meet the ever-increasing energy supply...

2019 ◽  
Vol 7 (23) ◽  
pp. 7104-7113 ◽  
Author(s):  
Fafei Hu ◽  
Luqi Tao ◽  
Huaiyu Ye ◽  
Xiandong Li ◽  
Xianping Chen

Hydrogen production by water splitting using a particular photocatalyst has received extensive attention as a substitute for clean energy sources.


2019 ◽  
Vol 11 (4) ◽  
pp. 29-49 ◽  
Author(s):  
Muhammad Razi ◽  
Yousaf Ali

These days, the excessive industrialization, elevated levels of pollution, and the increased energy crisis has led nations towards the use of renewable energy sources. Through the use of renewable energy sources, global warming can also be decreased, which is currently the biggest environmental issue worldwide. Pakistan, being a developing country, relies on the use of fossil fuels for the generation of electricity. The alarming increase in population, energy consumption per capita and energy wastages lead to a shortfall. To resolve this crucial issue, the alternative solutions considered include the use of renewable sources of energy such as hydro, solar and wind. The use of these renewable energy sources is governed by various environmental, economic and social parameters. The influence of these parameters on the use of renewable energy sources is studied through the use of DEMATEL and revised DEMATEL techniques.


2017 ◽  
Vol 19 (3) ◽  
pp. 588-613 ◽  
Author(s):  
Zhuofeng Hu ◽  
Zhurui Shen ◽  
Jimmy C. Yu

Hydrogen from photocatalytic water splitting is a sustainable and renewable source of clean energy.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3250 ◽  
Author(s):  
Evgeny Lisin ◽  
Galina Kurdiukova ◽  
Pavel Okley ◽  
Veronika Chernova

Currently, the majority of world economies (even those located in the sunbelt (+/− 35 degrees of latitude with good sunshine with low seasonality) uses various types of fossil fuels as the main source of energy for their economies. However, this represents a very volatile and unsustainable strategy, since according to various estimates, the fossil fuel era will inevitably end as all carbon fuels are going to be spent in the next few centuries. Unlike traditional energy, renewable energy sources (RES) are not based on energy resources, but rather rely upon natural energy flows. With regard to its unique property, there has been an active construction of power plants of renewable energy and their gradual integration into national energy supply systems in recent decades. At the same time, the existing models of electricity markets were unprepared for their wide distribution. Hence, determination of the market value of energy generated by power plants using renewable energy sources becomes a particularly significant issue. This market value has to take into account the prevention of costs from the use of fossil fuels, as well as the resulting environmental benefits. Our paper proposes methods for solving this problem, contributing to the increase of economic efficiency of investment projects for the construction of renewable energy facilities and the formation of economic incentives for their propagation in energy supply systems. The proposed methods are based on the dynamic differentiation of tariffs for consumers with renewable energy sources depending on their structure of electricity consumption. Its effectiveness is demonstrated by calculating the cost of electricity for households located in the Krasnodar region using renewable energy sources. It is shown that this approach to the formation of tariffs for consumers allows the household to receive additional savings from the efficient use of energy installations on RES and energy storage devices in terms of alignment of the energy consumption schedule. This creates a significant incentive for households to use them and contributes to increasing the effectiveness of government renewable energy support programs, including by solving the acute problem of raising electricity tariffs from the grid.


2020 ◽  
pp. 43-54
Author(s):  
Helena M. Ramos ◽  
◽  
Mariana Simão

A elevada intermitência das fontes de energia renováveis condiciona a produção de energia elétrica, que continua a depender muito dos combustíveis fósseis. Uma vez que existe complementaridade por parte das fontes de energia renováveis, a sua integração conjunta é, sem dúvida, a melhor solução para reduzir esta dependência. Aliado a este facto, poderá coexistir um sistema de armazenamento por bombagem, capaz de gerar reservas hídricas, que serão aproveitadas quando a procura exceder a oferta energética. Procedeu-se ao desenvolvimento de dois modelos: um sobre custos de turbomáquinas e outro que visa o estudo do potencial de recuperação de energia de uma solução energética híbrida com armazenamento por bombagem combinado com fonte de energia eólica. Foram estudadas diferentes combinações para estas duas fontes de energia renovável, analisando o consumo satisfeito e a energia eólica não consumida, tendo-se concluído que o excedente de energia eólica pode ser aproveitado para bombagem. The high intermittence of renewable energy sources determines the production of electricity, which remains highly dependent on fossil fuels. Since there is complementarity between renewable energy sources, their joint integration is a potential solution to reduce this dependency. Consequentially, a pumping storage system capable of generating water reserves can coexist, which will be used when demand exceeds the energy supply. Two models were developed: one based on turbomachinery costs and the other based on the potential of energy recovery of a hybrid energy solution with pump storage combined with wind energy. Different combinations were studied for these two sources, analysing the satisfied consumption and the wind energy that is not consumed, in which it was concluded that the surplus of wind energy can be used by pumped storage.


2021 ◽  
Author(s):  
Iqtidar Ahmad ◽  
Ismail Shahid ◽  
Anwar Ali ◽  
Shakeel Zeb ◽  
Lei Gao ◽  
...  

To overcome the regular exhaustion of fossil fuels and environmental issues, the hydrogen creation by photocatalytic water splitting has turn into the core heart of modern research. Here, the van...


Author(s):  
Warda Rahim ◽  
Jonathan Skelton ◽  
David O Scanlon

The environmental burden of fossil fuels and the rising impact of global warming have created an urgent need for sustainable clean energy sources. This has led to widespread interest in...


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1283
Author(s):  
Zeineb Thiehmed ◽  
Abdul Shakoor ◽  
Talal Altahtamouni

The energy from fossil fuels has been recognized as a main factor of global warming and environmental pollution. Therefore, there is an urgent need to replace fossil fuels with clean, cost-effective, long-lasting, and environmentally friendly fuel to solve the future energy crisis of the world. Therefore, the development of clean, sustainable, and renewable energy sources is a prime concern. In this regard, solar energy-driven hydrogen production is considered as an overriding opening for renewable and green energy by virtue of its high energy efficiency, high energy density, and non-toxicity along with zero emissions. Water splitting is a promising technology for producing hydrogen, which represents a potentially and environmentally clean fuel. Water splitting is a widely known process for hydrogen production using different techniques and materials. Among different techniques of water splitting, electrocatalytic and photocatalytic water splitting using semiconductor materials have been considered as the most scalable and cost-effective approaches for the commercial production of sustainable hydrogen. In order to achieve a high yield of hydrogen from these processes, obtaining a suitable, efficient, and stable catalyst is a significant factor. Among the different types of semiconductor catalysts, tungsten disulfide (WS2) has been widely utilized as a catalytic active material for the water-splitting process, owing to its layered 2D structure and its interesting chemical, physical, and structural properties. However, WS2 suffers from some disadvantages that limit its performance in catalytic water splitting. Among the various techniques and strategies that have been constructed to overcome the limitations of WS2 is heterostructure construction. In this process, WS2 is coupled with another semiconducting material in order to facilitate the charge transfer and prevent the charge recombination, which will enhance the catalytic performance. This review aims to summarize the recent studies and findings on WS2 and its heterostructures as a catalyst in the electrocatalytic and photocatalytic water-splitting processes.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5888
Author(s):  
Saulius Baskutis ◽  
Jolanta Baskutiene ◽  
Valentinas Navickas ◽  
Yuriy Bilan ◽  
Wojciech Cieśliński

Environmental pollution, energy supply and security of supply have become major issues across the world due to climate change, limited energy sources, energy price volatility and energy supply constraints. Energy availability, energy efficiency and the replacement of fossil fuels by renewable energy sources are key factors in the global development of sustainable energy. In many countries with limited fossil fuel resources, the sustainable development of renewable energy sources is an important tool in reducing dependence on imported fuels. Some alternative energy sources, such as wind, solar, tidal and hydropower, seem almost inexhaustible. With the exception of tidal energy, all of these sources have been used extensively and for a long time. This article examines the improvement of energy security and the government’s actions to promote the use of renewable energy sources, focusing on increasing energy efficiency and reducing energy intensity and dependence on energy imports in Lithuania. In addition, the article provides the state of renewable energy sources in Lithuania, aspects of sustainability and future development directions and perspectives.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 63 ◽  
Author(s):  
Sergio Díaz-Abad ◽  
María Millán ◽  
Manuel A. Rodrigo ◽  
Justo Lobato

In the near future, primary energy from fossil fuels should be gradually replaced with renewable and clean energy sources. To succeed in this goal, hydrogen has proven to be a very suitable energy carrier, because it can be easily produced by water electrolysis using renewable energy sources. After storage, it can be fed to a fuel cell, again producing electricity. There are many ways to improve the efficiency of this process, some of them based on the combination of the electrolytic process with other non-electrochemical processes. One of the most promising is the thermochemical hybrid sulphur cycle (also known as Westinghouse cycle). This cycle combines a thermochemical step (H2SO4 decomposition) with an electrochemical one, where the hydrogen is produced from the oxidation of SO2 and H2O (SO2 depolarization electrolysis, carried out at a considerably lower cell voltage compared to conventional electrolysis). This review summarizes the different catalysts that have been tested for the oxidation of SO2 in the anode of the electrolysis cell. Their advantages and disadvantages, the effect of platinum (Pt) loading, and new tendencies in their use are presented. This is expected to shed light on future development of new catalysts for this interesting process.


Sign in / Sign up

Export Citation Format

Share Document