Anthracyclines: biosynthesis, engineering and clinical applications

2022 ◽  
Author(s):  
Mandy B. Hulst ◽  
Thadee Grocholski ◽  
Jacques J. C. Neefjes ◽  
Gilles P. van Wezel ◽  
Mikko Metsä-Ketelä

Anthracyclines are important anticancer drugs. We discuss recent insights into the biosynthetic pathways and bioactivities of anthracyclines, and evaluate the discovery and engineering of effective derivatives with less severe side effects.

2020 ◽  
Vol 27 (13) ◽  
pp. 2118-2132 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Hakan Ozben ◽  
Ferhat Hanikoglu ◽  
Tomris Ozben

: Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.


2019 ◽  
Vol 19 (8) ◽  
pp. 1037-1047 ◽  
Author(s):  
Jihene Elloumi-Mseddi ◽  
Dhouha Msalbi ◽  
Raouia Fakhfakh ◽  
Sami Aifa

Background:Drug repositioning is becoming an ideal strategy to select new anticancer drugs. In particular, drugs treating the side effects of chemotherapy are the best candidates.Objective:In this present work, we undertook the evaluation of anti-tumour activity of two anti-diarrheal drugs (nifuroxazide and rifaximin).Methods:Anti-proliferative effect against breast cancer cells (MDA-MB-231, MCF-7 and T47D) was assessed by MTT analysis, the Brdu incorporation, mitochondrial permeability and caspase-3 activity.Results:Both the drugs displayed cytotoxic effects on MCF-7, T47D and MDA-MB-231 cells. The lowest IC50 values were obtained on MCF-7 cells after 24, 48 and 72 hours of treatment while T47D and MDA-MB-231 were more resistant. The IC50 values on T47D and MDA-MB-231 cells became significantly low after 72 hours of treatment showing a late cytotoxicity effect especially of nifuroxazide but still less important than that of MCF-7 cells. According to the IC50 values, the non-tumour cell line HEK293 seems to be less sensitive to cytotoxicity especially against rifaximin. Both the drugs have shown an accumulation of rhodamine 123 as a function of the rise of their concentrations while the Brdu incorporation decreased. Despite the absence of a significant difference in the cell cycle between the treated and non-treated MCF-7 cells, the caspase-3 activity increased with the drug concentrations rise suggesting an apoptotic effect.Conclusion:Nifuroxazide and rifaximin are used to overcome the diarrheal side effect of anticancer drugs. However, they have shown to be anti-tumour drugs which make them potential dual effective drugs against cancer and the side effects of chemotherapy.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1379 ◽  
Author(s):  
Sarah Stewart ◽  
Juan Domínguez-Robles ◽  
Ryan Donnelly ◽  
Eneko Larrañeta

The oral route is a popular and convenient means of drug delivery. However, despite its advantages, it also has challenges. Many drugs are not suitable for oral delivery due to: first pass metabolism; less than ideal properties; and side-effects of treatment. Additionally, oral delivery relies heavily on patient compliance. Implantable drug delivery devices are an alternative system that can achieve effective delivery with lower drug concentrations, and as a result, minimise side-effects whilst increasing patient compliance. This article gives an overview of classification of these drug delivery devices; the mechanism of drug release; the materials used for manufacture; the various methods of manufacture; and examples of clinical applications of implantable drug delivery devices.


Author(s):  
Adam K. Jacob ◽  
James R. Hebl

Ankle blockade is a safe, efficacious, and well-tolerated anesthetic for foot and ankle surgery The following aspects of the procedure are reviewed: clinical applications, relevant anatomy, patient position, technique (including neural localization techniques, needle insertion site, and needle redirection cues), and side effects and complications.


Author(s):  
Adam K. Jacob

Sciatic nerve blockade is performed to achieve anesthesia and analgesia of the distal lower extremity, including the anterior and posterolateral leg, ankle, and foot. The following aspects of the procedure are reviewed: clinical applications, relevant anatomy, patient position, technique (including neural localization techniques, needle insertion site, and needle redirection cues), and side effects and complications. Use of ultrasound guidance is also discussed.


Author(s):  
David E. Byer

Wrist blockade anesthetizes the median, ulnar, and radial nerves at the level of the wrist. The following aspects of the procedure are reviewed: clinical applications, relevant anatomy, patient position, technique (including neural localization techniques, needle insertion site, and needle redirection cues), and side effects and complications.


Sign in / Sign up

Export Citation Format

Share Document